ayoolaolafenwa commited on
Commit
5009b7f
·
1 Parent(s): 87bf273

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +115 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
4
+ import time
5
+ import numpy as np
6
+ from torch.nn import functional as F
7
+ import os
8
+ from threading import Thread
9
+
10
+
11
+
12
+ model_path = "ayoolaolafenwa/ChatLM"
13
+ access_token = "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"
14
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token = access_token)
15
+
16
+ model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code = True, device_map = "auto",
17
+ torch_dtype=torch.bfloat16, load_in_8bit=True, use_auth_token = access_token)
18
+
19
+ class StopOnTokens(StoppingCriteria):
20
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
21
+ stop_ids = [0]
22
+ for stop_id in stop_ids:
23
+ if input_ids[0][-1] == stop_id:
24
+ return True
25
+ return False
26
+
27
+
28
+ def user(message, history):
29
+ # Append the user's message to the conversation history
30
+ return "", history + [[message, ""]]
31
+
32
+
33
+ def chat(curr_system_message, history):
34
+ # Initialize a StopOnTokens object
35
+ stop = StopOnTokens()
36
+
37
+ # Construct the input message string for the model by concatenating the current system message and conversation history
38
+ messages = curr_system_message + \
39
+ "".join(["".join(["<user>: "+item[0], "<chatbot>: "+item[1]])
40
+ for item in history])
41
+
42
+ # Tokenize the messages string
43
+ tokens = tokenizer([messages], return_tensors="pt").to("cuda")
44
+ streamer = TextIteratorStreamer(
45
+ tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
46
+
47
+ token_ids = tokens.input_ids
48
+ attention_mask=tokens.attention_mask
49
+
50
+ generate_kwargs = dict(
51
+ input_ids=token_ids,
52
+ attention_mask = attention_mask,
53
+ streamer = streamer,
54
+ max_length=2048,
55
+ do_sample=True,
56
+ num_return_sequences=1,
57
+ eos_token_id=tokenizer.eos_token_id,
58
+ temperature = 0.7,
59
+ stopping_criteria=StoppingCriteriaList([stop])
60
+ )
61
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
62
+ t.start()
63
+
64
+ #Initialize an empty string to store the generated text
65
+ partial_text = ""
66
+ for new_text in streamer:
67
+ # print(new_text)
68
+ partial_text += new_text
69
+ history[-1][1] = partial_text
70
+ # Yield an empty string to cleanup the message textbox and the updated conversation history
71
+ yield history
72
+ return partial_text
73
+
74
+
75
+
76
+
77
+ with gr.Blocks() as demo:
78
+ # history = gr.State([])
79
+ gr.Markdown("# ChatLM")
80
+
81
+ with gr.Row():
82
+ with gr.Column():
83
+ gr.Markdown(
84
+ """
85
+ ChatLM is a chat Large Language model finetuned with pretrained [Falcon-1B model](https://huggingface.co/tiiuae/falcon-rw-1b)
86
+ and trained on [chat-bot-instructions prompts dataset](https://huggingface.co/datasets/ayoolaolafenwa/sft-data).
87
+ ChatLM was trained on a dataset containing normal day to day human conversations, due to limited data used in training
88
+ it is not suitable for tasks like coding and current affairs.
89
+ """
90
+ )
91
+
92
+ chatbot = gr.Chatbot().style(height=500)
93
+ with gr.Row():
94
+ with gr.Column():
95
+ msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box",
96
+ show_label=False).style(container=False)
97
+ with gr.Column():
98
+ with gr.Row():
99
+ submit = gr.Button("Run")
100
+ stop = gr.Button("Stop")
101
+ clear = gr.Button("Clear")
102
+ system_msg = gr.Textbox(
103
+ label="Response Message", interactive=False, visible=False)
104
+
105
+ submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
106
+ fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
107
+ submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
108
+ fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
109
+ stop.click(fn=None, inputs=None, outputs=None, cancels=[
110
+ submit_event, submit_click_event], queue=False)
111
+ clear.click(lambda: None, None, [chatbot], queue=False)
112
+
113
+
114
+ demo.queue(max_size=32, concurrency_count=2)
115
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ torch
3
+ transformers
4
+ numpy
5
+ einops
6
+ accelerate
7
+ bitsandbytes
8
+ scipy