ayoubsa commited on
Commit
335d300
·
verified ·
1 Parent(s): 9e13fc9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -37
app.py CHANGED
@@ -1,57 +1,44 @@
 
 
1
  from PIL import Image
2
  import numpy as np
3
- from ultralytics import YOLO
4
- import gradio as gr
5
 
6
  # Load the YOLO model
7
- MODEL_URL = 'https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt'
8
- #MODEL_URL = 'best.pt'
9
  model = YOLO(MODEL_URL)
10
 
11
- # Define the prediction function for Gradio
12
- def predict(image):
13
  try:
14
- # Convert PIL image to NumPy array
15
- image_array = np.array(image)
16
 
17
- # Perform prediction
18
  results = model(image_array)
19
 
20
- # Access the first result
21
- result = results[0]
22
-
23
- # Extract detected classes
24
- detected_classes = [model.names[int(cls)] for cls in result.boxes.cls]
25
- print(f"Detected classes: {detected_classes}")
26
-
27
- # Render bounding boxes on the image
28
- annotated_image = result.plot()
29
 
30
- # Convert the annotated image to PIL format
31
- output_image = Image.fromarray(annotated_image)
32
-
33
- # Return the annotated image and detected classes as output
34
- return output_image, detected_classes
35
 
 
36
  except Exception as e:
37
- print("Error during prediction:", str(e))
38
- return None, ["Error during processing"]
39
 
40
- # Create the Gradio interface
41
- iface = gr.Interface(
42
  fn=predict,
43
- inputs=gr.Image(type="pil", label="Upload an Image"), # Input image as PIL
44
  outputs=[
45
- gr.Image(type="pil", label="Predicted Image with Bounding Boxes"), # Annotated image
46
- gr.Label(label="Detected Classes") # Detected classes
47
  ],
48
  title="YOLO Object Detection App",
49
- description="Upload an image, and the YOLO model will detect objects and annotate them with bounding boxes and class labels."
50
  )
51
 
52
- # Launch the Gradio app
53
- iface.launch()
54
-
55
-
56
-
57
-
 
1
+ import gradio as gr
2
+ from ultralytics import YOLO
3
  from PIL import Image
4
  import numpy as np
 
 
5
 
6
  # Load the YOLO model
7
+ MODEL_URL = "https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt"
 
8
  model = YOLO(MODEL_URL)
9
 
10
+ # Define the prediction function
11
+ def predict(input_img):
12
  try:
13
+ # Convert PIL Image to NumPy array
14
+ image_array = np.array(input_img)
15
 
16
+ # Perform inference
17
  results = model(image_array)
18
 
19
+ # Extract detected class names
20
+ detected_classes = [model.names[int(cls)] for cls in results[0].boxes.cls]
 
 
 
 
 
 
 
21
 
22
+ # Render results on the image
23
+ results[0].plot() # Render bounding boxes on the image
24
+ output_image = Image.fromarray(results[0].orig_img)
 
 
25
 
26
+ return output_image, {cls: 1.0 for cls in detected_classes} # Dummy scores for simplicity
27
  except Exception as e:
28
+ print(f"Error during processing: {e}")
29
+ return None, {"Error": str(e)}
30
 
31
+ # Gradio app configuration
32
+ gradio_app = gr.Interface(
33
  fn=predict,
34
+ inputs=gr.Image(label="Upload an Image", type="pil"),
35
  outputs=[
36
+ gr.Image(label="Predicted Image with Bounding Boxes"), # Rendered image with bounding boxes
37
+ gr.Label(label="Detected Classes"), # Detected class names
38
  ],
39
  title="YOLO Object Detection App",
40
+ description="Upload an image, and the YOLO model will detect objects in it.",
41
  )
42
 
43
+ if __name__ == "__main__":
44
+ gradio_app.launch()