Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
@@ -40,5 +40,51 @@ gradio_app = gr.Interface(
|
|
40 |
description="Upload an image, and the YOLO model will detect objects in it.",
|
41 |
)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
if __name__ == "__main__":
|
44 |
gradio_app.launch()
|
|
|
|
1 |
+
"""import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
|
|
40 |
description="Upload an image, and the YOLO model will detect objects in it.",
|
41 |
)
|
42 |
|
43 |
+
if __name__ == "__main__":
|
44 |
+
gradio_app.launch()"""
|
45 |
+
|
46 |
+
import gradio as gr
|
47 |
+
from ultralytics import YOLO
|
48 |
+
from PIL import Image
|
49 |
+
import numpy as np
|
50 |
+
|
51 |
+
# Load the YOLO model
|
52 |
+
MODEL_URL = "https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt"
|
53 |
+
model = YOLO(MODEL_URL)
|
54 |
+
|
55 |
+
# Define the prediction function
|
56 |
+
def predict(input_img):
|
57 |
+
try:
|
58 |
+
# Convert PIL Image to NumPy array
|
59 |
+
image_array = np.array(input_img)
|
60 |
+
|
61 |
+
# Perform inference
|
62 |
+
results = model(image_array)
|
63 |
+
|
64 |
+
# Extract detected class names
|
65 |
+
detected_classes = [model.names[int(cls)] for cls in results[0].boxes.cls]
|
66 |
+
|
67 |
+
# Render results on the image
|
68 |
+
rendered_image = results[0].plot() # This method returns the image with bounding boxes
|
69 |
+
output_image = Image.fromarray(rendered_image) # Convert the rendered image to a PIL Image
|
70 |
+
|
71 |
+
return output_image, {cls: 1.0 for cls in detected_classes} # Dummy scores for simplicity
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Error during processing: {e}")
|
74 |
+
return None, {"Error": str(e)}
|
75 |
+
|
76 |
+
# Gradio app configuration
|
77 |
+
gradio_app = gr.Interface(
|
78 |
+
predict,
|
79 |
+
inputs=gr.Image(label="Upload an Image", type="pil"),
|
80 |
+
outputs=[
|
81 |
+
gr.Image(label="Predicted Image with Bounding Boxes"), # Rendered image with bounding boxes
|
82 |
+
gr.Label(label="Detected Classes"), # Detected class names
|
83 |
+
],
|
84 |
+
title="YOLO Object Detection App",
|
85 |
+
description="Upload an image, and the YOLO model will detect objects in it.",
|
86 |
+
)
|
87 |
+
|
88 |
if __name__ == "__main__":
|
89 |
gradio_app.launch()
|
90 |
+
|