ayoubsa commited on
Commit
8f970ae
·
verified ·
1 Parent(s): 52ccd52

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -1
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import gradio as gr
2
  from ultralytics import YOLO
3
  from PIL import Image
4
  import numpy as np
@@ -40,5 +40,51 @@ gradio_app = gr.Interface(
40
  description="Upload an image, and the YOLO model will detect objects in it.",
41
  )
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  if __name__ == "__main__":
44
  gradio_app.launch()
 
 
1
+ """import gradio as gr
2
  from ultralytics import YOLO
3
  from PIL import Image
4
  import numpy as np
 
40
  description="Upload an image, and the YOLO model will detect objects in it.",
41
  )
42
 
43
+ if __name__ == "__main__":
44
+ gradio_app.launch()"""
45
+
46
+ import gradio as gr
47
+ from ultralytics import YOLO
48
+ from PIL import Image
49
+ import numpy as np
50
+
51
+ # Load the YOLO model
52
+ MODEL_URL = "https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt"
53
+ model = YOLO(MODEL_URL)
54
+
55
+ # Define the prediction function
56
+ def predict(input_img):
57
+ try:
58
+ # Convert PIL Image to NumPy array
59
+ image_array = np.array(input_img)
60
+
61
+ # Perform inference
62
+ results = model(image_array)
63
+
64
+ # Extract detected class names
65
+ detected_classes = [model.names[int(cls)] for cls in results[0].boxes.cls]
66
+
67
+ # Render results on the image
68
+ rendered_image = results[0].plot() # This method returns the image with bounding boxes
69
+ output_image = Image.fromarray(rendered_image) # Convert the rendered image to a PIL Image
70
+
71
+ return output_image, {cls: 1.0 for cls in detected_classes} # Dummy scores for simplicity
72
+ except Exception as e:
73
+ print(f"Error during processing: {e}")
74
+ return None, {"Error": str(e)}
75
+
76
+ # Gradio app configuration
77
+ gradio_app = gr.Interface(
78
+ predict,
79
+ inputs=gr.Image(label="Upload an Image", type="pil"),
80
+ outputs=[
81
+ gr.Image(label="Predicted Image with Bounding Boxes"), # Rendered image with bounding boxes
82
+ gr.Label(label="Detected Classes"), # Detected class names
83
+ ],
84
+ title="YOLO Object Detection App",
85
+ description="Upload an image, and the YOLO model will detect objects in it.",
86
+ )
87
+
88
  if __name__ == "__main__":
89
  gradio_app.launch()
90
+