Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,163 +1,3 @@
|
|
1 |
-
"""import gradio as gr
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
-
from pathlib import Path
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
# Load YOLO Model
|
8 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', path='https://huggingface.co/ayoubsa/yolo_model/blob/main/best.pt') # Replace 'model.pt' with your uploaded model's path
|
9 |
-
|
10 |
-
# Function to make predictions
|
11 |
-
def predict(image):
|
12 |
-
# Convert input to PIL image if it's not
|
13 |
-
if isinstance(image, np.ndarray):
|
14 |
-
image = Image.fromarray(image)
|
15 |
-
|
16 |
-
# Run inference
|
17 |
-
results = model(image)
|
18 |
-
|
19 |
-
# Extract predictions (bounding boxes, labels, confidence scores)
|
20 |
-
predictions = results.pandas().xyxy[0] # Pandas dataframe
|
21 |
-
annotated_image = np.array(results.render()[0]) # Annotated image as NumPy array
|
22 |
-
|
23 |
-
return annotated_image, predictions[['name', 'confidence']].to_dict(orient="records")
|
24 |
-
|
25 |
-
# Create Gradio Interface
|
26 |
-
image_input = gr.inputs.Image(type="numpy", label="Input Image")
|
27 |
-
output_image = gr.outputs.Image(type="numpy", label="Annotated Image")
|
28 |
-
output_text = gr.outputs.JSON(label="Predictions (Labels & Confidence)")
|
29 |
-
|
30 |
-
interface = gr.Interface(
|
31 |
-
fn=predict,
|
32 |
-
inputs=image_input,
|
33 |
-
outputs=[output_image, output_text],
|
34 |
-
title="YOLO Object Detection",
|
35 |
-
description="Upload an image to detect objects using YOLO.",
|
36 |
-
examples=["example1.jpg", "example2.jpg", "example3.jpg"] # Provide paths to example images
|
37 |
-
)
|
38 |
-
|
39 |
-
interface.launch()
|
40 |
-
|
41 |
-
|
42 |
-
from datasets import load_dataset
|
43 |
-
import gradio as gr
|
44 |
-
import random
|
45 |
-
import numpy as np
|
46 |
-
from PIL import Image
|
47 |
-
import torch
|
48 |
-
|
49 |
-
# Load the YOLO model
|
50 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', path='https://huggingface.co/ayoubsa/yolo_model/blob/main/best.pt') # Replace with your uploaded model's path
|
51 |
-
|
52 |
-
# Load your dataset from Hugging Face
|
53 |
-
dataset = load_dataset("https://huggingface.co/datasets/ayoubsa/Sign_Road_Detection_Dataset/tree/main") # Replace with your dataset's repository name on Hugging Face
|
54 |
-
|
55 |
-
# Function to get random examples from the dataset
|
56 |
-
def get_random_examples(dataset, num_examples=3):
|
57 |
-
images = dataset['test'][:]['image'] # Assuming the images are in the 'train' split and column 'image'
|
58 |
-
random_examples = random.sample(images, num_examples)
|
59 |
-
return random_examples
|
60 |
-
|
61 |
-
# Define the prediction function
|
62 |
-
def predict(image):
|
63 |
-
results = model(image) # Perform object detection using YOLO
|
64 |
-
results.render() # Render bounding boxes on the image
|
65 |
-
output_image = Image.fromarray(results.imgs[0]) # Convert to PIL image
|
66 |
-
return output_image
|
67 |
-
|
68 |
-
# Get examples for Gradio app
|
69 |
-
example_images = get_random_examples(dataset, num_examples=3)
|
70 |
-
|
71 |
-
# Create the Gradio interface
|
72 |
-
iface = gr.Interface(
|
73 |
-
fn=predict,
|
74 |
-
inputs=gr.inputs.Image(type="pil"), # PIL Image for compatibility with YOLO
|
75 |
-
outputs=gr.outputs.Image(type="pil"),
|
76 |
-
examples=example_images # Linking examples directly from Hugging Face dataset
|
77 |
-
)
|
78 |
-
|
79 |
-
# Launch the Gradio app
|
80 |
-
iface.launch()
|
81 |
-
|
82 |
-
import gradio as gr
|
83 |
-
import torch
|
84 |
-
from PIL import Image
|
85 |
-
import zipfile
|
86 |
-
import os
|
87 |
-
import random
|
88 |
-
|
89 |
-
# Define the paths for the model and dataset
|
90 |
-
MODEL_PATH = 'https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt' # YOLO model file
|
91 |
-
DATASET_PATH = 'test.zip' # The name of the uploaded test dataset zip file
|
92 |
-
|
93 |
-
# Load the YOLO model
|
94 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', path=MODEL_PATH)
|
95 |
-
|
96 |
-
# Unzip the dataset
|
97 |
-
if not os.path.exists("unzipped_test"):
|
98 |
-
with zipfile.ZipFile(DATASET_PATH, 'r') as zip_ref:
|
99 |
-
zip_ref.extractall("unzipped_test") # Extract images to this folder
|
100 |
-
|
101 |
-
# Get all image paths from the unzipped folder
|
102 |
-
image_folder = "unzipped_test"
|
103 |
-
all_images = [os.path.join(image_folder, f) for f in os.listdir(image_folder) if f.endswith(('.jpg', '.png', '.jpeg'))]
|
104 |
-
|
105 |
-
# Function to get random examples
|
106 |
-
def get_random_examples(num_examples=3):
|
107 |
-
if len(all_images) >= num_examples:
|
108 |
-
return random.sample(all_images, num_examples)
|
109 |
-
else:
|
110 |
-
return all_images # Return whatever is available if less than required
|
111 |
-
|
112 |
-
# Define the prediction function
|
113 |
-
def predict(image):
|
114 |
-
results = model(image) # Perform object detection using YOLO
|
115 |
-
results.render() # Render bounding boxes on the image
|
116 |
-
output_image = Image.fromarray(results.imgs[0]) # Convert to PIL image
|
117 |
-
return output_image
|
118 |
-
|
119 |
-
# Get example images
|
120 |
-
example_images = get_random_examples(num_examples=3)
|
121 |
-
|
122 |
-
# Create the Gradio interface
|
123 |
-
iface = gr.Interface(
|
124 |
-
fn=predict,
|
125 |
-
inputs=gr.inputs.Image(type="pil", label="Upload an Image"),
|
126 |
-
outputs=gr.outputs.Image(type="pil", label="Predicted Image with Bounding Boxes"),
|
127 |
-
examples=example_images # Link the example images
|
128 |
-
)
|
129 |
-
|
130 |
-
# Launch the Gradio app
|
131 |
-
iface.launch()
|
132 |
-
|
133 |
-
import gradio as gr
|
134 |
-
import torch
|
135 |
-
from PIL import Image
|
136 |
-
import numpy as np
|
137 |
-
from ultralytics import YOLO
|
138 |
-
|
139 |
-
# Load the YOLO model
|
140 |
-
MODEL_URL= 'https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt'
|
141 |
-
model = YOLO(MODEL_URL)
|
142 |
-
|
143 |
-
# Define the prediction function
|
144 |
-
def predict(image):
|
145 |
-
results = model(image) # Perform object detection using YOLO
|
146 |
-
results.render() # Render bounding boxes on the image
|
147 |
-
output_image = Image.fromarray(results.imgs[0]) # Convert to PIL image
|
148 |
-
return output_image
|
149 |
-
|
150 |
-
# Create the Gradio interface
|
151 |
-
iface = gr.Interface(
|
152 |
-
fn=predict,
|
153 |
-
inputs=gr.Image(type="pil", label="Upload an Image"), # Upload input as PIL Image
|
154 |
-
outputs=gr.Image(type="pil", label="Predicted Image with Bounding Boxes"), # Output image
|
155 |
-
title="Object Detection App",
|
156 |
-
description="Upload an image, and the YOLO model will detect objects in it."
|
157 |
-
)
|
158 |
-
|
159 |
-
# Launch the Gradio app
|
160 |
-
iface.launch()"""
|
161 |
from PIL import Image
|
162 |
import numpy as np
|
163 |
from ultralytics import YOLO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from PIL import Image
|
2 |
import numpy as np
|
3 |
from ultralytics import YOLO
|