Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -77,7 +77,7 @@ iface = gr.Interface(
|
|
77 |
)
|
78 |
|
79 |
# Launch the Gradio app
|
80 |
-
iface.launch()
|
81 |
|
82 |
import gradio as gr
|
83 |
import torch
|
@@ -127,5 +127,31 @@ iface = gr.Interface(
|
|
127 |
examples=example_images # Link the example images
|
128 |
)
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
# Launch the Gradio app
|
131 |
iface.launch()
|
|
|
77 |
)
|
78 |
|
79 |
# Launch the Gradio app
|
80 |
+
iface.launch()
|
81 |
|
82 |
import gradio as gr
|
83 |
import torch
|
|
|
127 |
examples=example_images # Link the example images
|
128 |
)
|
129 |
|
130 |
+
# Launch the Gradio app
|
131 |
+
iface.launch()"""
|
132 |
+
|
133 |
+
import gradio as gr
|
134 |
+
import torch
|
135 |
+
from PIL import Image
|
136 |
+
|
137 |
+
# Load the YOLO model
|
138 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='model.pt') # Replace with your uploaded model's path
|
139 |
+
|
140 |
+
# Define the prediction function
|
141 |
+
def predict(image):
|
142 |
+
results = model(image) # Perform object detection using YOLO
|
143 |
+
results.render() # Render bounding boxes on the image
|
144 |
+
output_image = Image.fromarray(results.imgs[0]) # Convert to PIL image
|
145 |
+
return output_image
|
146 |
+
|
147 |
+
# Create the Gradio interface
|
148 |
+
iface = gr.Interface(
|
149 |
+
fn=predict,
|
150 |
+
inputs=gr.inputs.Image(type="pil", label="Upload an Image"), # Upload input as PIL Image
|
151 |
+
outputs=gr.outputs.Image(type="pil", label="Predicted Image with Bounding Boxes"), # Output image
|
152 |
+
title="Object Detection App",
|
153 |
+
description="Upload an image, and the YOLO model will detect objects in it."
|
154 |
+
)
|
155 |
+
|
156 |
# Launch the Gradio app
|
157 |
iface.launch()
|