ayoubsa commited on
Commit
f8b6069
·
verified ·
1 Parent(s): 77d82ac

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -0
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ from pathlib import Path
5
+ import numpy as np
6
+
7
+ # Load YOLO Model
8
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='https://huggingface.co/ayoubsa/yolo_model/blob/main/best.pt') # Replace 'model.pt' with your uploaded model's path
9
+
10
+ # Function to make predictions
11
+ def predict(image):
12
+ # Convert input to PIL image if it's not
13
+ if isinstance(image, np.ndarray):
14
+ image = Image.fromarray(image)
15
+
16
+ # Run inference
17
+ results = model(image)
18
+
19
+ # Extract predictions (bounding boxes, labels, confidence scores)
20
+ predictions = results.pandas().xyxy[0] # Pandas dataframe
21
+ annotated_image = np.array(results.render()[0]) # Annotated image as NumPy array
22
+
23
+ return annotated_image, predictions[['name', 'confidence']].to_dict(orient="records")
24
+
25
+ # Create Gradio Interface
26
+ image_input = gr.inputs.Image(type="numpy", label="Input Image")
27
+ output_image = gr.outputs.Image(type="numpy", label="Annotated Image")
28
+ output_text = gr.outputs.JSON(label="Predictions (Labels & Confidence)")
29
+
30
+ interface = gr.Interface(
31
+ fn=predict,
32
+ inputs=image_input,
33
+ outputs=[output_image, output_text],
34
+ title="YOLO Object Detection",
35
+ description="Upload an image to detect objects using YOLO.",
36
+ examples=["example1.jpg", "example2.jpg", "example3.jpg"] # Provide paths to example images
37
+ )
38
+
39
+ interface.launch()"""
40
+
41
+
42
+ from datasets import load_dataset
43
+ import gradio as gr
44
+ import random
45
+ import numpy as np
46
+ from PIL import Image
47
+ import torch
48
+
49
+ # Load the YOLO model
50
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='model.pt') # Replace with your uploaded model's path
51
+
52
+ # Load your dataset from Hugging Face
53
+ dataset = load_dataset("username/your_dataset_name") # Replace with your dataset's repository name on Hugging Face
54
+
55
+ # Function to get random examples from the dataset
56
+ def get_random_examples(dataset, num_examples=3):
57
+ images = dataset['train'][:]['image'] # Assuming the images are in the 'train' split and column 'image'
58
+ random_examples = random.sample(images, num_examples)
59
+ return random_examples
60
+
61
+ # Define the prediction function
62
+ def predict(image):
63
+ results = model(image) # Perform object detection using YOLO
64
+ results.render() # Render bounding boxes on the image
65
+ output_image = Image.fromarray(results.imgs[0]) # Convert to PIL image
66
+ return output_image
67
+
68
+ # Get examples for Gradio app
69
+ example_images = get_random_examples(dataset, num_examples=3)
70
+
71
+ # Create the Gradio interface
72
+ iface = gr.Interface(
73
+ fn=predict,
74
+ inputs=gr.inputs.Image(type="pil"), # PIL Image for compatibility with YOLO
75
+ outputs=gr.outputs.Image(type="pil"),
76
+ examples=example_images # Linking examples directly from Hugging Face dataset
77
+ )
78
+
79
+ # Launch the Gradio app
80
+ iface.launch()
81
+