File size: 23,371 Bytes
6ad6801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import os
import librosa
from utils.chords import Chords
import re
from enum import Enum
import pyrubberband as pyrb
import torch
import math
class FeatureTypes(Enum):
cqt = 'cqt'
class Preprocess():
def __init__(self, config, feature_to_use, dataset_names, root_dir):
self.config = config
self.dataset_names = dataset_names
self.root_path = root_dir + '/'
self.time_interval = config.feature["hop_length"]/config.mp3["song_hz"]
self.no_of_chord_datapoints_per_sequence = math.ceil(config.mp3['inst_len'] / self.time_interval)
self.Chord_class = Chords()
# isophonic
self.isophonic_directory = self.root_path + 'isophonic/'
# uspop
self.uspop_directory = self.root_path + 'uspop/'
self.uspop_audio_path = 'audio/'
self.uspop_lab_path = 'annotations/uspopLabels/'
self.uspop_index_path = 'annotations/uspopLabels.txt'
# robbie williams
self.robbie_williams_directory = self.root_path + 'robbiewilliams/'
self.robbie_williams_audio_path = 'audio/'
self.robbie_williams_lab_path = 'chords/'
self.feature_name = feature_to_use
self.is_cut_last_chord = False
def find_mp3_path(self, dirpath, word):
for filename in os.listdir(dirpath):
last_dir = dirpath.split("/")[-2]
if ".mp3" in filename:
tmp = filename.replace(".mp3", "")
tmp = tmp.replace(last_dir, "")
filename_lower = tmp.lower()
filename_lower = " ".join(re.findall("[a-zA-Z]+", filename_lower))
if word.lower().replace(" ", "") in filename_lower.replace(" ", ""):
return filename
def find_mp3_path_robbiewilliams(self, dirpath, word):
for filename in os.listdir(dirpath):
if ".mp3" in filename:
tmp = filename.replace(".mp3", "")
filename_lower = tmp.lower()
filename_lower = filename_lower.replace("robbie williams", "")
filename_lower = " ".join(re.findall("[a-zA-Z]+", filename_lower))
filename_lower = self.song_pre(filename_lower)
if self.song_pre(word.lower()).replace(" ", "") in filename_lower.replace(" ", ""):
return filename
def get_all_files(self):
res_list = []
# isophonic
if "isophonic" in self.dataset_names:
for dirpath, dirnames, filenames in os.walk(self.isophonic_directory):
if not dirnames:
for filename in filenames:
if ".lab" in filename:
tmp = filename.replace(".lab", "")
song_name = " ".join(re.findall("[a-zA-Z]+", tmp)).replace("CD", "")
mp3_path = self.find_mp3_path(dirpath, song_name)
res_list.append([song_name, os.path.join(dirpath, filename), os.path.join(dirpath, mp3_path),
os.path.join(self.root_path, "result", "isophonic")])
# uspop
if "uspop" in self.dataset_names:
with open(os.path.join(self.uspop_directory, self.uspop_index_path)) as f:
uspop_lab_list = f.readlines()
uspop_lab_list = [x.strip() for x in uspop_lab_list]
for lab_path in uspop_lab_list:
spl = lab_path.split('/')
lab_artist = self.uspop_pre(spl[2])
lab_title = self.uspop_pre(spl[4][3:-4])
lab_path = lab_path.replace('./uspopLabels/', '')
lab_path = os.path.join(self.uspop_directory, self.uspop_lab_path, lab_path)
for filename in os.listdir(os.path.join(self.uspop_directory, self.uspop_audio_path)):
if not '.csv' in filename:
spl = filename.split('-')
mp3_artist = self.uspop_pre(spl[0])
mp3_title = self.uspop_pre(spl[1][:-4])
if lab_artist == mp3_artist and lab_title == mp3_title:
res_list.append([mp3_artist + mp3_title, lab_path,
os.path.join(self.uspop_directory, self.uspop_audio_path, filename),
os.path.join(self.root_path, "result", "uspop")])
break
# robbie williams
if "robbiewilliams" in self.dataset_names:
for dirpath, dirnames, filenames in os.walk(self.robbie_williams_directory):
if not dirnames:
for filename in filenames:
if ".txt" in filename and (not 'README' in filename):
tmp = filename.replace(".txt", "")
song_name = " ".join(re.findall("[a-zA-Z]+", tmp)).replace("GTChords", "")
mp3_dir = dirpath.replace("chords", "audio")
mp3_path = self.find_mp3_path_robbiewilliams(mp3_dir, song_name)
res_list.append([song_name, os.path.join(dirpath, filename), os.path.join(mp3_dir, mp3_path),
os.path.join(self.root_path, "result", "robbiewilliams")])
return res_list
def uspop_pre(self, text):
text = text.lower()
text = text.replace('_', '')
text = text.replace(' ', '')
text = " ".join(re.findall("[a-zA-Z]+", text))
return text
def song_pre(self, text):
to_remove = ["'", '`', '(', ')', ' ', '&', 'and', 'And']
for remove in to_remove:
text = text.replace(remove, '')
return text
def config_to_folder(self):
mp3_config = self.config.mp3
feature_config = self.config.feature
mp3_string = "%d_%.1f_%.1f" % \
(mp3_config['song_hz'], mp3_config['inst_len'],
mp3_config['skip_interval'])
feature_string = "%s_%d_%d_%d" % \
(self.feature_name.value, feature_config['n_bins'], feature_config['bins_per_octave'], feature_config['hop_length'])
return mp3_config, feature_config, mp3_string, feature_string
def generate_labels_features_new(self, all_list):
pid = os.getpid()
mp3_config, feature_config, mp3_str, feature_str = self.config_to_folder()
i = 0 # number of songs
j = 0 # number of impossible songs
k = 0 # number of tried songs
total = 0 # number of generated instances
stretch_factors = [1.0]
shift_factors = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
loop_broken = False
for song_name, lab_path, mp3_path, save_path in all_list:
# different song initialization
if loop_broken:
loop_broken = False
i += 1
print(pid, "generating features from ...", os.path.join(mp3_path))
if i % 10 == 0:
print(i, ' th song')
original_wav, sr = librosa.load(os.path.join(mp3_path), sr=mp3_config['song_hz'])
# make result path if not exists
# save_path, mp3_string, feature_string, song_name, aug.pt
result_path = os.path.join(save_path, mp3_str, feature_str, song_name.strip())
if not os.path.exists(result_path):
os.makedirs(result_path)
# calculate result
for stretch_factor in stretch_factors:
if loop_broken:
loop_broken = False
break
for shift_factor in shift_factors:
# for filename
idx = 0
chord_info = self.Chord_class.get_converted_chord(os.path.join(lab_path))
k += 1
# stretch original sound and chord info
x = pyrb.time_stretch(original_wav, sr, stretch_factor)
x = pyrb.pitch_shift(x, sr, shift_factor)
audio_length = x.shape[0]
chord_info['start'] = chord_info['start'] * 1/stretch_factor
chord_info['end'] = chord_info['end'] * 1/stretch_factor
last_sec = chord_info.iloc[-1]['end']
last_sec_hz = int(last_sec * mp3_config['song_hz'])
if audio_length + mp3_config['skip_interval'] < last_sec_hz:
print('loaded song is too short :', song_name)
loop_broken = True
j += 1
break
elif audio_length > last_sec_hz:
x = x[:last_sec_hz]
origin_length = last_sec_hz
origin_length_in_sec = origin_length / mp3_config['song_hz']
current_start_second = 0
# get chord list between current_start_second and current+song_length
while current_start_second + mp3_config['inst_len'] < origin_length_in_sec:
inst_start_sec = current_start_second
curSec = current_start_second
chord_list = []
# extract chord per 1/self.time_interval
while curSec < inst_start_sec + mp3_config['inst_len']:
try:
available_chords = chord_info.loc[(chord_info['start'] <= curSec) & (
chord_info['end'] > curSec + self.time_interval)].copy()
if len(available_chords) == 0:
available_chords = chord_info.loc[((chord_info['start'] >= curSec) & (
chord_info['start'] <= curSec + self.time_interval)) | (
(chord_info['end'] >= curSec) & (
chord_info['end'] <= curSec + self.time_interval))].copy()
if len(available_chords) == 1:
chord = available_chords['chord_id'].iloc[0]
elif len(available_chords) > 1:
max_starts = available_chords.apply(lambda row: max(row['start'], curSec),
axis=1)
available_chords['max_start'] = max_starts
min_ends = available_chords.apply(
lambda row: min(row.end, curSec + self.time_interval), axis=1)
available_chords['min_end'] = min_ends
chords_lengths = available_chords['min_end'] - available_chords['max_start']
available_chords['chord_length'] = chords_lengths
chord = available_chords.ix[available_chords['chord_length'].idxmax()]['chord_id']
else:
chord = 24
except Exception as e:
chord = 24
print(e)
print(pid, "no chord")
raise RuntimeError()
finally:
# convert chord by shift factor
if chord != 24:
chord += shift_factor * 2
chord = chord % 24
chord_list.append(chord)
curSec += self.time_interval
if len(chord_list) == self.no_of_chord_datapoints_per_sequence:
try:
sequence_start_time = current_start_second
sequence_end_time = current_start_second + mp3_config['inst_len']
start_index = int(sequence_start_time * mp3_config['song_hz'])
end_index = int(sequence_end_time * mp3_config['song_hz'])
song_seq = x[start_index:end_index]
etc = '%.1f_%.1f' % (
current_start_second, current_start_second + mp3_config['inst_len'])
aug = '%.2f_%i' % (stretch_factor, shift_factor)
if self.feature_name == FeatureTypes.cqt:
# print(pid, "make feature")
feature = librosa.cqt(song_seq, sr=sr, n_bins=feature_config['n_bins'],
bins_per_octave=feature_config['bins_per_octave'],
hop_length=feature_config['hop_length'])
else:
raise NotImplementedError
if feature.shape[1] > self.no_of_chord_datapoints_per_sequence:
feature = feature[:, :self.no_of_chord_datapoints_per_sequence]
if feature.shape[1] != self.no_of_chord_datapoints_per_sequence:
print('loaded features length is too short :', song_name)
loop_broken = True
j += 1
break
result = {
'feature': feature,
'chord': chord_list,
'etc': etc
}
# save_path, mp3_string, feature_string, song_name, aug.pt
filename = aug + "_" + str(idx) + ".pt"
torch.save(result, os.path.join(result_path, filename))
idx += 1
total += 1
except Exception as e:
print(e)
print(pid, "feature error")
raise RuntimeError()
else:
print("invalid number of chord datapoints in sequence :", len(chord_list))
current_start_second += mp3_config['skip_interval']
print(pid, "total instances: %d" % total)
def generate_labels_features_voca(self, all_list):
pid = os.getpid()
mp3_config, feature_config, mp3_str, feature_str = self.config_to_folder()
i = 0 # number of songs
j = 0 # number of impossible songs
k = 0 # number of tried songs
total = 0 # number of generated instances
stretch_factors = [1.0]
shift_factors = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
loop_broken = False
for song_name, lab_path, mp3_path, save_path in all_list:
save_path = save_path + '_voca'
# different song initialization
if loop_broken:
loop_broken = False
i += 1
print(pid, "generating features from ...", os.path.join(mp3_path))
if i % 10 == 0:
print(i, ' th song')
original_wav, sr = librosa.load(os.path.join(mp3_path), sr=mp3_config['song_hz'])
# save_path, mp3_string, feature_string, song_name, aug.pt
result_path = os.path.join(save_path, mp3_str, feature_str, song_name.strip())
if not os.path.exists(result_path):
os.makedirs(result_path)
# calculate result
for stretch_factor in stretch_factors:
if loop_broken:
loop_broken = False
break
for shift_factor in shift_factors:
# for filename
idx = 0
try:
chord_info = self.Chord_class.get_converted_chord_voca(os.path.join(lab_path))
except Exception as e:
print(e)
print(pid, " chord lab file error : %s" % song_name)
loop_broken = True
j += 1
break
k += 1
# stretch original sound and chord info
x = pyrb.time_stretch(original_wav, sr, stretch_factor)
x = pyrb.pitch_shift(x, sr, shift_factor)
audio_length = x.shape[0]
chord_info['start'] = chord_info['start'] * 1/stretch_factor
chord_info['end'] = chord_info['end'] * 1/stretch_factor
last_sec = chord_info.iloc[-1]['end']
last_sec_hz = int(last_sec * mp3_config['song_hz'])
if audio_length + mp3_config['skip_interval'] < last_sec_hz:
print('loaded song is too short :', song_name)
loop_broken = True
j += 1
break
elif audio_length > last_sec_hz:
x = x[:last_sec_hz]
origin_length = last_sec_hz
origin_length_in_sec = origin_length / mp3_config['song_hz']
current_start_second = 0
# get chord list between current_start_second and current+song_length
while current_start_second + mp3_config['inst_len'] < origin_length_in_sec:
inst_start_sec = current_start_second
curSec = current_start_second
chord_list = []
# extract chord per 1/self.time_interval
while curSec < inst_start_sec + mp3_config['inst_len']:
try:
available_chords = chord_info.loc[(chord_info['start'] <= curSec) & (chord_info['end'] > curSec + self.time_interval)].copy()
if len(available_chords) == 0:
available_chords = chord_info.loc[((chord_info['start'] >= curSec) & (chord_info['start'] <= curSec + self.time_interval)) | ((chord_info['end'] >= curSec) & (chord_info['end'] <= curSec + self.time_interval))].copy()
if len(available_chords) == 1:
chord = available_chords['chord_id'].iloc[0]
elif len(available_chords) > 1:
max_starts = available_chords.apply(lambda row: max(row['start'], curSec),axis=1)
available_chords['max_start'] = max_starts
min_ends = available_chords.apply(lambda row: min(row.end, curSec + self.time_interval), axis=1)
available_chords['min_end'] = min_ends
chords_lengths = available_chords['min_end'] - available_chords['max_start']
available_chords['chord_length'] = chords_lengths
chord = available_chords.ix[available_chords['chord_length'].idxmax()]['chord_id']
else:
chord = 169
except Exception as e:
chord = 169
print(e)
print(pid, "no chord")
raise RuntimeError()
finally:
# convert chord by shift factor
if chord != 169 and chord != 168:
chord += shift_factor * 14
chord = chord % 168
chord_list.append(chord)
curSec += self.time_interval
if len(chord_list) == self.no_of_chord_datapoints_per_sequence:
try:
sequence_start_time = current_start_second
sequence_end_time = current_start_second + mp3_config['inst_len']
start_index = int(sequence_start_time * mp3_config['song_hz'])
end_index = int(sequence_end_time * mp3_config['song_hz'])
song_seq = x[start_index:end_index]
etc = '%.1f_%.1f' % (
current_start_second, current_start_second + mp3_config['inst_len'])
aug = '%.2f_%i' % (stretch_factor, shift_factor)
if self.feature_name == FeatureTypes.cqt:
feature = librosa.cqt(song_seq, sr=sr, n_bins=feature_config['n_bins'],
bins_per_octave=feature_config['bins_per_octave'],
hop_length=feature_config['hop_length'])
else:
raise NotImplementedError
if feature.shape[1] > self.no_of_chord_datapoints_per_sequence:
feature = feature[:, :self.no_of_chord_datapoints_per_sequence]
if feature.shape[1] != self.no_of_chord_datapoints_per_sequence:
print('loaded features length is too short :', song_name)
loop_broken = True
j += 1
break
result = {
'feature': feature,
'chord': chord_list,
'etc': etc
}
# save_path, mp3_string, feature_string, song_name, aug.pt
filename = aug + "_" + str(idx) + ".pt"
torch.save(result, os.path.join(result_path, filename))
idx += 1
total += 1
except Exception as e:
print(e)
print(pid, "feature error")
raise RuntimeError()
else:
print("invalid number of chord datapoints in sequence :", len(chord_list))
current_start_second += mp3_config['skip_interval']
print(pid, "total instances: %d" % total) |