Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from transformers import Wav2Vec2FeatureExtractor, AutoModel | |
class FeatureExtractorMERT: | |
def __init__(self, model_name="m-a-p/MERT-v1-95M", device = "None", sr=24000): | |
self.model_name = model_name | |
self.sr = sr | |
if device == "None": | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda" if use_cuda else "cpu") | |
else: | |
self.device = device | |
self.model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True).to(self.device) | |
self.processor = Wav2Vec2FeatureExtractor.from_pretrained(self.model_name, trust_remote_code=True) | |
def extract_features_from_segment(self, segment, sample_rate, save_path): | |
input_audio = segment.float() | |
model_inputs = self.processor(input_audio, sampling_rate=sample_rate, return_tensors="pt") | |
model_inputs = model_inputs.to(self.device) | |
with torch.no_grad(): | |
model_outputs = self.model(**model_inputs, output_hidden_states=True) | |
# Stack and process hidden states | |
all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()[1:, :, :].unsqueeze(0) | |
all_layer_hidden_states = all_layer_hidden_states.mean(dim=2) | |
features = all_layer_hidden_states.cpu().detach().numpy() | |
# Save features | |
np.save(save_path, features) |