Spaces:
Sleeping
Sleeping
import numpy as np | |
import librosa | |
import mir_eval | |
import torch | |
import os | |
idx2chord = ['C', 'C:min', 'C#', 'C#:min', 'D', 'D:min', 'D#', 'D#:min', 'E', 'E:min', 'F', 'F:min', 'F#', | |
'F#:min', 'G', 'G:min', 'G#', 'G#:min', 'A', 'A:min', 'A#', 'A#:min', 'B', 'B:min', 'N'] | |
root_list = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] | |
quality_list = ['min', 'maj', 'dim', 'aug', 'min6', 'maj6', 'min7', 'minmaj7', 'maj7', '7', 'dim7', 'hdim7', 'sus2', 'sus4'] | |
def idx2voca_chord(): | |
idx2voca_chord = {} | |
idx2voca_chord[169] = 'N' | |
idx2voca_chord[168] = 'X' | |
for i in range(168): | |
root = i // 14 | |
root = root_list[root] | |
quality = i % 14 | |
quality = quality_list[quality] | |
if i % 14 != 1: | |
chord = root + ':' + quality | |
else: | |
chord = root | |
idx2voca_chord[i] = chord | |
return idx2voca_chord | |
def audio_file_to_features(audio_file, config): | |
original_wav, sr = librosa.load(audio_file, sr=config.mp3['song_hz'], mono=True) | |
currunt_sec_hz = 0 | |
while len(original_wav) > currunt_sec_hz + config.mp3['song_hz'] * config.mp3['inst_len']: | |
start_idx = int(currunt_sec_hz) | |
end_idx = int(currunt_sec_hz + config.mp3['song_hz'] * config.mp3['inst_len']) | |
tmp = librosa.cqt(original_wav[start_idx:end_idx], sr=sr, n_bins=config.feature['n_bins'], bins_per_octave=config.feature['bins_per_octave'], hop_length=config.feature['hop_length']) | |
if start_idx == 0: | |
feature = tmp | |
else: | |
feature = np.concatenate((feature, tmp), axis=1) | |
currunt_sec_hz = end_idx | |
tmp = librosa.cqt(original_wav[currunt_sec_hz:], sr=sr, n_bins=config.feature['n_bins'], bins_per_octave=config.feature['bins_per_octave'], hop_length=config.feature['hop_length']) | |
feature = np.concatenate((feature, tmp), axis=1) | |
feature = np.log(np.abs(feature) + 1e-6) | |
feature_per_second = config.mp3['inst_len'] / config.model['timestep'] | |
song_length_second = len(original_wav)/config.mp3['song_hz'] | |
return feature, feature_per_second, song_length_second | |
# Audio files with format of wav and mp3 | |
def get_audio_paths(audio_dir): | |
return [os.path.join(root, fname) for (root, dir_names, file_names) in os.walk(audio_dir, followlinks=True) | |
for fname in file_names if (fname.lower().endswith('.wav') or fname.lower().endswith('.mp3'))] | |
def get_lab_paths(lab_dir): | |
return [os.path.join(root, fname) for (root, dir_names, file_names) in os.walk(lab_dir, followlinks=True) | |
for fname in file_names if (fname.lower().endswith('.lab'))] | |
class metrics(): | |
def __init__(self): | |
super(metrics, self).__init__() | |
self.score_metrics = ['root', 'thirds', 'triads', 'sevenths', 'tetrads', 'majmin', 'mirex'] | |
self.score_list_dict = dict() | |
for i in self.score_metrics: | |
self.score_list_dict[i] = list() | |
self.average_score = dict() | |
def score(self, metric, gt_path, est_path): | |
if metric == 'root': | |
score = self.root_score(gt_path,est_path) | |
elif metric == 'thirds': | |
score = self.thirds_score(gt_path,est_path) | |
elif metric == 'triads': | |
score = self.triads_score(gt_path,est_path) | |
elif metric == 'sevenths': | |
score = self.sevenths_score(gt_path,est_path) | |
elif metric == 'tetrads': | |
score = self.tetrads_score(gt_path,est_path) | |
elif metric == 'majmin': | |
score = self.majmin_score(gt_path,est_path) | |
elif metric == 'mirex': | |
score = self.mirex_score(gt_path,est_path) | |
else: | |
raise NotImplementedError | |
return score | |
def root_score(self, gt_path, est_path): | |
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) | |
ref_labels = lab_file_error_modify(ref_labels) | |
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) | |
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), | |
ref_intervals.max(), mir_eval.chord.NO_CHORD, | |
mir_eval.chord.NO_CHORD) | |
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, | |
est_intervals, est_labels) | |
durations = mir_eval.util.intervals_to_durations(intervals) | |
comparisons = mir_eval.chord.root(ref_labels, est_labels) | |
score = mir_eval.chord.weighted_accuracy(comparisons, durations) | |
return score | |
def thirds_score(self, gt_path, est_path): | |
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) | |
ref_labels = lab_file_error_modify(ref_labels) | |
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) | |
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), | |
ref_intervals.max(), mir_eval.chord.NO_CHORD, | |
mir_eval.chord.NO_CHORD) | |
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, | |
est_intervals, est_labels) | |
durations = mir_eval.util.intervals_to_durations(intervals) | |
comparisons = mir_eval.chord.thirds(ref_labels, est_labels) | |
score = mir_eval.chord.weighted_accuracy(comparisons, durations) | |
return score | |
def triads_score(self, gt_path, est_path): | |
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) | |
ref_labels = lab_file_error_modify(ref_labels) | |
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) | |
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), | |
ref_intervals.max(), mir_eval.chord.NO_CHORD, | |
mir_eval.chord.NO_CHORD) | |
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, | |
est_intervals, est_labels) | |
durations = mir_eval.util.intervals_to_durations(intervals) | |
comparisons = mir_eval.chord.triads(ref_labels, est_labels) | |
score = mir_eval.chord.weighted_accuracy(comparisons, durations) | |
return score | |
def sevenths_score(self, gt_path, est_path): | |
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) | |
ref_labels = lab_file_error_modify(ref_labels) | |
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) | |
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), | |
ref_intervals.max(), mir_eval.chord.NO_CHORD, | |
mir_eval.chord.NO_CHORD) | |
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, | |
est_intervals, est_labels) | |
durations = mir_eval.util.intervals_to_durations(intervals) | |
comparisons = mir_eval.chord.sevenths(ref_labels, est_labels) | |
score = mir_eval.chord.weighted_accuracy(comparisons, durations) | |
return score | |
def tetrads_score(self, gt_path, est_path): | |
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) | |
ref_labels = lab_file_error_modify(ref_labels) | |
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) | |
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), | |
ref_intervals.max(), mir_eval.chord.NO_CHORD, | |
mir_eval.chord.NO_CHORD) | |
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, | |
est_intervals, est_labels) | |
durations = mir_eval.util.intervals_to_durations(intervals) | |
comparisons = mir_eval.chord.tetrads(ref_labels, est_labels) | |
score = mir_eval.chord.weighted_accuracy(comparisons, durations) | |
return score | |
def majmin_score(self, gt_path, est_path): | |
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) | |
ref_labels = lab_file_error_modify(ref_labels) | |
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) | |
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), | |
ref_intervals.max(), mir_eval.chord.NO_CHORD, | |
mir_eval.chord.NO_CHORD) | |
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, | |
est_intervals, est_labels) | |
durations = mir_eval.util.intervals_to_durations(intervals) | |
comparisons = mir_eval.chord.majmin(ref_labels, est_labels) | |
score = mir_eval.chord.weighted_accuracy(comparisons, durations) | |
return score | |
def mirex_score(self, gt_path, est_path): | |
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) | |
ref_labels = lab_file_error_modify(ref_labels) | |
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) | |
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), | |
ref_intervals.max(), mir_eval.chord.NO_CHORD, | |
mir_eval.chord.NO_CHORD) | |
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, | |
est_intervals, est_labels) | |
durations = mir_eval.util.intervals_to_durations(intervals) | |
comparisons = mir_eval.chord.mirex(ref_labels, est_labels) | |
score = mir_eval.chord.weighted_accuracy(comparisons, durations) | |
return score | |
def lab_file_error_modify(ref_labels): | |
for i in range(len(ref_labels)): | |
if ref_labels[i][-2:] == ':4': | |
ref_labels[i] = ref_labels[i].replace(':4', ':sus4') | |
elif ref_labels[i][-2:] == ':6': | |
ref_labels[i] = ref_labels[i].replace(':6', ':maj6') | |
elif ref_labels[i][-4:] == ':6/2': | |
ref_labels[i] = ref_labels[i].replace(':6/2', ':maj6/2') | |
elif ref_labels[i] == 'Emin/4': | |
ref_labels[i] = 'E:min/4' | |
elif ref_labels[i] == 'A7/3': | |
ref_labels[i] = 'A:7/3' | |
elif ref_labels[i] == 'Bb7/3': | |
ref_labels[i] = 'Bb:7/3' | |
elif ref_labels[i] == 'Bb7/5': | |
ref_labels[i] = 'Bb:7/5' | |
elif ref_labels[i].find(':') == -1: | |
if ref_labels[i].find('min') != -1: | |
ref_labels[i] = ref_labels[i][:ref_labels[i].find('min')] + ':' + ref_labels[i][ref_labels[i].find('min'):] | |
return ref_labels | |
def root_majmin_score_calculation(valid_dataset, config, mean, std, device, model, model_type, verbose=False): | |
valid_song_names = valid_dataset.song_names | |
paths = valid_dataset.preprocessor.get_all_files() | |
metrics_ = metrics() | |
song_length_list = list() | |
for path in paths: | |
song_name, lab_file_path, mp3_file_path, _ = path | |
if not song_name in valid_song_names: | |
continue | |
try: | |
n_timestep = config.model['timestep'] | |
feature, feature_per_second, song_length_second = audio_file_to_features(mp3_file_path, config) | |
feature = feature.T | |
feature = (feature - mean) / std | |
time_unit = feature_per_second | |
num_pad = n_timestep - (feature.shape[0] % n_timestep) | |
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0) | |
num_instance = feature.shape[0] // n_timestep | |
start_time = 0.0 | |
lines = [] | |
with torch.no_grad(): | |
model.eval() | |
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(device) | |
for t in range(num_instance): | |
if model_type == 'btc': | |
encoder_output, _ = model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :]) | |
prediction, _ = model.output_layer(encoder_output) | |
prediction = prediction.squeeze() | |
elif model_type == 'cnn' or model_type =='crnn': | |
prediction, _, _, _ = model(feature[:, n_timestep * t:n_timestep * (t + 1), :], torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) | |
for i in range(n_timestep): | |
if t == 0 and i == 0: | |
prev_chord = prediction[i].item() | |
continue | |
if prediction[i].item() != prev_chord: | |
lines.append( | |
'%.6f %.6f %s\n' % ( | |
start_time, time_unit * (n_timestep * t + i), idx2chord[prev_chord])) | |
start_time = time_unit * (n_timestep * t + i) | |
prev_chord = prediction[i].item() | |
if t == num_instance - 1 and i + num_pad == n_timestep: | |
if start_time != time_unit * (n_timestep * t + i): | |
lines.append( | |
'%.6f %.6f %s\n' % ( | |
start_time, time_unit * (n_timestep * t + i), idx2chord[prev_chord])) | |
break | |
pid = os.getpid() | |
tmp_path = 'tmp_' + str(pid) + '.lab' | |
with open(tmp_path, 'w') as f: | |
for line in lines: | |
f.write(line) | |
root_majmin = ['root', 'majmin'] | |
for m in root_majmin: | |
metrics_.score_list_dict[m].append(metrics_.score(metric=m, gt_path=lab_file_path, est_path=tmp_path)) | |
song_length_list.append(song_length_second) | |
if verbose: | |
for m in root_majmin: | |
print('song name %s, %s score : %.4f' % (song_name, m, metrics_.score_list_dict[m][-1])) | |
except: | |
print('song name %s\' lab file error' % song_name) | |
tmp = song_length_list / np.sum(song_length_list) | |
for m in root_majmin: | |
metrics_.average_score[m] = np.sum(np.multiply(metrics_.score_list_dict[m], tmp)) | |
return metrics_.score_list_dict, song_length_list, metrics_.average_score | |
def root_majmin_score_calculation_crf(valid_dataset, config, mean, std, device, pre_model, model, model_type, verbose=False): | |
valid_song_names = valid_dataset.song_names | |
paths = valid_dataset.preprocessor.get_all_files() | |
metrics_ = metrics() | |
song_length_list = list() | |
for path in paths: | |
song_name, lab_file_path, mp3_file_path, _ = path | |
if not song_name in valid_song_names: | |
continue | |
try: | |
n_timestep = config.model['timestep'] | |
feature, feature_per_second, song_length_second = audio_file_to_features(mp3_file_path, config) | |
feature = feature.T | |
feature = (feature - mean) / std | |
time_unit = feature_per_second | |
num_pad = n_timestep - (feature.shape[0] % n_timestep) | |
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0) | |
num_instance = feature.shape[0] // n_timestep | |
start_time = 0.0 | |
lines = [] | |
with torch.no_grad(): | |
model.eval() | |
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(device) | |
for t in range(num_instance): | |
if (model_type == 'cnn') or (model_type == 'crnn') or (model_type == 'btc'): | |
logits = pre_model(feature[:, n_timestep * t:n_timestep * (t + 1), :], torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) | |
prediction, _ = model(logits, torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) | |
else: | |
raise NotImplementedError | |
for i in range(n_timestep): | |
if t == 0 and i == 0: | |
prev_chord = prediction[i].item() | |
continue | |
if prediction[i].item() != prev_chord: | |
lines.append( | |
'%.6f %.6f %s\n' % ( | |
start_time, time_unit * (n_timestep * t + i), idx2chord[prev_chord])) | |
start_time = time_unit * (n_timestep * t + i) | |
prev_chord = prediction[i].item() | |
if t == num_instance - 1 and i + num_pad == n_timestep: | |
if start_time != time_unit * (n_timestep * t + i): | |
lines.append( | |
'%.6f %.6f %s\n' % ( | |
start_time, time_unit * (n_timestep * t + i), idx2chord[prev_chord])) | |
break | |
pid = os.getpid() | |
tmp_path = 'tmp_' + str(pid) + '.lab' | |
with open(tmp_path, 'w') as f: | |
for line in lines: | |
f.write(line) | |
root_majmin = ['root', 'majmin'] | |
for m in root_majmin: | |
metrics_.score_list_dict[m].append(metrics_.score(metric=m, gt_path=lab_file_path, est_path=tmp_path)) | |
song_length_list.append(song_length_second) | |
if verbose: | |
for m in root_majmin: | |
print('song name %s, %s score : %.4f' % (song_name, m, metrics_.score_list_dict[m][-1])) | |
except: | |
print('song name %s\' lab file error' % song_name) | |
tmp = song_length_list / np.sum(song_length_list) | |
for m in root_majmin: | |
metrics_.average_score[m] = np.sum(np.multiply(metrics_.score_list_dict[m], tmp)) | |
return metrics_.score_list_dict, song_length_list, metrics_.average_score | |
def large_voca_score_calculation(valid_dataset, config, mean, std, device, model, model_type, verbose=False): | |
idx2voca = idx2voca_chord() | |
valid_song_names = valid_dataset.song_names | |
paths = valid_dataset.preprocessor.get_all_files() | |
metrics_ = metrics() | |
song_length_list = list() | |
for path in paths: | |
song_name, lab_file_path, mp3_file_path, _ = path | |
if not song_name in valid_song_names: | |
continue | |
try: | |
n_timestep = config.model['timestep'] | |
feature, feature_per_second, song_length_second = audio_file_to_features(mp3_file_path, config) | |
feature = feature.T | |
feature = (feature - mean) / std | |
time_unit = feature_per_second | |
num_pad = n_timestep - (feature.shape[0] % n_timestep) | |
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0) | |
num_instance = feature.shape[0] // n_timestep | |
start_time = 0.0 | |
lines = [] | |
with torch.no_grad(): | |
model.eval() | |
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(device) | |
for t in range(num_instance): | |
if model_type == 'btc': | |
encoder_output, _ = model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :]) | |
prediction, _ = model.output_layer(encoder_output) | |
prediction = prediction.squeeze() | |
elif model_type == 'cnn' or model_type =='crnn': | |
prediction, _, _, _ = model(feature[:, n_timestep * t:n_timestep * (t + 1), :], torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) | |
for i in range(n_timestep): | |
if t == 0 and i == 0: | |
prev_chord = prediction[i].item() | |
continue | |
if prediction[i].item() != prev_chord: | |
lines.append( | |
'%.6f %.6f %s\n' % ( | |
start_time, time_unit * (n_timestep * t + i), idx2voca[prev_chord])) | |
start_time = time_unit * (n_timestep * t + i) | |
prev_chord = prediction[i].item() | |
if t == num_instance - 1 and i + num_pad == n_timestep: | |
if start_time != time_unit * (n_timestep * t + i): | |
lines.append( | |
'%.6f %.6f %s\n' % ( | |
start_time, time_unit * (n_timestep * t + i), idx2voca[prev_chord])) | |
break | |
pid = os.getpid() | |
tmp_path = 'tmp_' + str(pid) + '.lab' | |
with open(tmp_path, 'w') as f: | |
for line in lines: | |
f.write(line) | |
for m in metrics_.score_metrics: | |
metrics_.score_list_dict[m].append(metrics_.score(metric=m, gt_path=lab_file_path, est_path=tmp_path)) | |
song_length_list.append(song_length_second) | |
if verbose: | |
for m in metrics_.score_metrics: | |
print('song name %s, %s score : %.4f' % (song_name, m, metrics_.score_list_dict[m][-1])) | |
except: | |
print('song name %s\' lab file error' % song_name) | |
tmp = song_length_list / np.sum(song_length_list) | |
for m in metrics_.score_metrics: | |
metrics_.average_score[m] = np.sum(np.multiply(metrics_.score_list_dict[m], tmp)) | |
return metrics_.score_list_dict, song_length_list, metrics_.average_score | |
def large_voca_score_calculation_crf(valid_dataset, config, mean, std, device, pre_model, model, model_type, verbose=False): | |
idx2voca = idx2voca_chord() | |
valid_song_names = valid_dataset.song_names | |
paths = valid_dataset.preprocessor.get_all_files() | |
metrics_ = metrics() | |
song_length_list = list() | |
for path in paths: | |
song_name, lab_file_path, mp3_file_path, _ = path | |
if not song_name in valid_song_names: | |
continue | |
try: | |
n_timestep = config.model['timestep'] | |
feature, feature_per_second, song_length_second = audio_file_to_features(mp3_file_path, config) | |
feature = feature.T | |
feature = (feature - mean) / std | |
time_unit = feature_per_second | |
num_pad = n_timestep - (feature.shape[0] % n_timestep) | |
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0) | |
num_instance = feature.shape[0] // n_timestep | |
start_time = 0.0 | |
lines = [] | |
with torch.no_grad(): | |
model.eval() | |
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(device) | |
for t in range(num_instance): | |
if (model_type == 'cnn') or (model_type == 'crnn') or (model_type == 'btc'): | |
logits = pre_model(feature[:, n_timestep * t:n_timestep * (t + 1), :], torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) | |
prediction, _ = model(logits, torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) | |
else: | |
raise NotImplementedError | |
for i in range(n_timestep): | |
if t == 0 and i == 0: | |
prev_chord = prediction[i].item() | |
continue | |
if prediction[i].item() != prev_chord: | |
lines.append( | |
'%.6f %.6f %s\n' % ( | |
start_time, time_unit * (n_timestep * t + i), idx2voca[prev_chord])) | |
start_time = time_unit * (n_timestep * t + i) | |
prev_chord = prediction[i].item() | |
if t == num_instance - 1 and i + num_pad == n_timestep: | |
if start_time != time_unit * (n_timestep * t + i): | |
lines.append( | |
'%.6f %.6f %s\n' % ( | |
start_time, time_unit * (n_timestep * t + i), idx2voca[prev_chord])) | |
break | |
pid = os.getpid() | |
tmp_path = 'tmp_' + str(pid) + '.lab' | |
with open(tmp_path, 'w') as f: | |
for line in lines: | |
f.write(line) | |
for m in metrics_.score_metrics: | |
metrics_.score_list_dict[m].append(metrics_.score(metric=m, gt_path=lab_file_path, est_path=tmp_path)) | |
song_length_list.append(song_length_second) | |
if verbose: | |
for m in metrics_.score_metrics: | |
print('song name %s, %s score : %.4f' % (song_name, m, metrics_.score_list_dict[m][-1])) | |
except: | |
print('song name %s\' lab file error' % song_name) | |
tmp = song_length_list / np.sum(song_length_list) | |
for m in metrics_.score_metrics: | |
metrics_.average_score[m] = np.sum(np.multiply(metrics_.score_list_dict[m], tmp)) | |
return metrics_.score_list_dict, song_length_list, metrics_.average_score | |