music2emo-youtube-link-ja / utils /pytorch_utils.py
kjysmu's picture
Upload 22 files
6ad6801 verified
raw
history blame
1.28 kB
import torch
import numpy as np
import os
import math
from utils import logger
use_cuda = torch.cuda.is_available()
# optimization
# reference: http://pytorch.org/docs/master/_modules/torch/optim/lr_scheduler.html#ReduceLROnPlateau
def adjusting_learning_rate(optimizer, factor=.5, min_lr=0.00001):
for i, param_group in enumerate(optimizer.param_groups):
old_lr = float(param_group['lr'])
new_lr = max(old_lr * factor, min_lr)
param_group['lr'] = new_lr
logger.info('adjusting learning rate from %.6f to %.6f' % (old_lr, new_lr))
# model save and loading
def load_model(asset_path, model, optimizer, restore_epoch=0):
if os.path.isfile(os.path.join(asset_path, 'model', 'checkpoint_%d.pth.tar' % restore_epoch), map_location=lambda storage, loc: storage):
checkpoint = torch.load(os.path.join(asset_path, 'model', 'checkpoint_%d.pth.tar' % restore_epoch))
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
current_step = checkpoint['current_step']
logger.info("restore model with %d epoch" % restore_epoch)
else:
logger.info("no checkpoint with %d epoch" % restore_epoch)
current_step = 0
return model, optimizer, current_step