Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,58 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
if
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from peft import AutoPeftModelForCausalLM
|
3 |
+
from transformers import AutoTokenizer, TextStreamer
|
4 |
import streamlit as st
|
5 |
+
|
6 |
+
# Initialize Streamlit UI
|
7 |
+
st.title("Legal Query Chatbot")
|
8 |
+
st.write("Ask questions related to Indian traffic laws and get AI-generated responses.")
|
9 |
+
|
10 |
+
# Load LoRA fine-tuned model and tokenizer
|
11 |
+
model_path = "lora_model"
|
12 |
+
load_in_4bit = True
|
13 |
+
|
14 |
+
# Load the model
|
15 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
16 |
+
model_path,
|
17 |
+
torch_dtype=torch.float16 if not load_in_4bit else torch.float32,
|
18 |
+
load_in_4bit=load_in_4bit,
|
19 |
+
device_map="auto"
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load tokenizer
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
24 |
+
|
25 |
+
# Enable inference mode
|
26 |
+
model.eval()
|
27 |
+
|
28 |
+
# Streamlit input for user prompt
|
29 |
+
user_input = st.text_input("Enter your legal query:", "What are the penalties for breaking a red light in India?")
|
30 |
+
|
31 |
+
if user_input:
|
32 |
+
# Prepare the prompt
|
33 |
+
messages = [{"role": "user", "content": user_input}]
|
34 |
+
|
35 |
+
# Tokenize input
|
36 |
+
inputs = tokenizer.apply_chat_template(
|
37 |
+
messages,
|
38 |
+
tokenize=True,
|
39 |
+
add_generation_prompt=True,
|
40 |
+
return_tensors="pt"
|
41 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
+
|
43 |
+
# Streamlit progress indicator
|
44 |
+
with st.spinner("Generating response..."):
|
45 |
+
# Use a text streamer for efficient streaming output
|
46 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
47 |
+
|
48 |
+
# Generate response
|
49 |
+
output = model.generate(
|
50 |
+
input_ids=inputs,
|
51 |
+
streamer=text_streamer,
|
52 |
+
max_new_tokens=128,
|
53 |
+
use_cache=True,
|
54 |
+
temperature=1.5,
|
55 |
+
min_p=0.1
|
56 |
+
)
|
57 |
+
|
58 |
+
st.success("Generation Complete!")
|