Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
3 |
from qwen_vl_utils import process_vision_info
|
4 |
import torch
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
-
# Load model on CPU
|
10 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
11 |
"Qwen/Qwen2-VL-2B-Instruct", torch_dtype=torch.float32, device_map=None
|
12 |
-
).to("cpu")
|
13 |
-
|
14 |
min_pixels = 256*28*28
|
15 |
max_pixels = 1280*28*28
|
16 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
17 |
return model, processor
|
18 |
-
|
19 |
|
20 |
-
def
|
21 |
-
# Prepare the image for the model
|
22 |
messages = [
|
23 |
{
|
24 |
"role": "system",
|
@@ -29,7 +26,7 @@ def process_file(img, model, processor):
|
|
29 |
"content": [
|
30 |
{
|
31 |
"type": "image",
|
32 |
-
"image": img,
|
33 |
},
|
34 |
{
|
35 |
"type": "text",
|
@@ -39,7 +36,6 @@ def process_file(img, model, processor):
|
|
39 |
}
|
40 |
]
|
41 |
|
42 |
-
# Process the image for inference
|
43 |
text = processor.apply_chat_template(
|
44 |
messages, tokenize=False, add_generation_prompt=True
|
45 |
)
|
@@ -51,23 +47,22 @@ def process_file(img, model, processor):
|
|
51 |
padding=True,
|
52 |
return_tensors="pt",
|
53 |
)
|
54 |
-
inputs = inputs.to("cpu")
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
60 |
-
]
|
61 |
-
output_text = processor.batch_decode(
|
62 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
63 |
-
)
|
64 |
-
|
65 |
-
return output_text[0]
|
66 |
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
st.title("OCR Application with Keyword Search")
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Initialize session state variables
|
73 |
if 'current_image' not in st.session_state:
|
@@ -75,9 +70,6 @@ if 'current_image' not in st.session_state:
|
|
75 |
if 'extracted_text' not in st.session_state:
|
76 |
st.session_state.extracted_text = None
|
77 |
|
78 |
-
|
79 |
-
model, processor = load_model()
|
80 |
-
|
81 |
# Upload image
|
82 |
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
83 |
|
@@ -85,19 +77,32 @@ if uploaded_file is not None:
|
|
85 |
# Convert the uploaded file to an image
|
86 |
img = Image.open(uploaded_file)
|
87 |
|
88 |
-
if st.session_state.current_image != uploaded_file:
|
89 |
-
st.session_state.current_image = uploaded_file
|
90 |
-
st.session_state.extracted_text = process_file(img, model, processor)
|
91 |
-
|
92 |
# Display the uploaded image
|
93 |
st.image(img, caption="Uploaded Image", use_column_width=True)
|
94 |
|
95 |
-
# if
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
# Keyword Search
|
103 |
keyword = st.text_input("Enter keyword to search in the extracted text")
|
@@ -105,9 +110,8 @@ if keyword and st.session_state.extracted_text:
|
|
105 |
if keyword.lower() in st.session_state.extracted_text.lower():
|
106 |
highlighted_text = st.session_state.extracted_text.replace(keyword, f"**{keyword}**")
|
107 |
st.subheader("Keyword Found")
|
108 |
-
st.markdown(highlighted_text
|
109 |
else:
|
110 |
st.write("Keyword not found in the extracted text.")
|
111 |
elif keyword:
|
112 |
-
st.write("Please upload an image first
|
113 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
3 |
from qwen_vl_utils import process_vision_info
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
+
from threading import Thread
|
7 |
|
8 |
@st.cache_resource
|
9 |
def load_model():
|
|
|
10 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
11 |
"Qwen/Qwen2-VL-2B-Instruct", torch_dtype=torch.float32, device_map=None
|
12 |
+
).to("cpu")
|
|
|
13 |
min_pixels = 256*28*28
|
14 |
max_pixels = 1280*28*28
|
15 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
16 |
return model, processor
|
|
|
17 |
|
18 |
+
def process_file_streaming(img, model, processor):
|
|
|
19 |
messages = [
|
20 |
{
|
21 |
"role": "system",
|
|
|
26 |
"content": [
|
27 |
{
|
28 |
"type": "image",
|
29 |
+
"image": img,
|
30 |
},
|
31 |
{
|
32 |
"type": "text",
|
|
|
36 |
}
|
37 |
]
|
38 |
|
|
|
39 |
text = processor.apply_chat_template(
|
40 |
messages, tokenize=False, add_generation_prompt=True
|
41 |
)
|
|
|
47 |
padding=True,
|
48 |
return_tensors="pt",
|
49 |
)
|
50 |
+
inputs = inputs.to("cpu")
|
51 |
|
52 |
+
# Stream tokens
|
53 |
+
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
54 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=200)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
57 |
+
thread.start()
|
58 |
|
59 |
+
return streamer
|
|
|
60 |
|
61 |
+
# Load model and processor once
|
62 |
+
model, processor = load_model()
|
63 |
+
|
64 |
+
# Streamlit app
|
65 |
+
st.title("OCR Application with Real-Time Token Streaming")
|
66 |
|
67 |
# Initialize session state variables
|
68 |
if 'current_image' not in st.session_state:
|
|
|
70 |
if 'extracted_text' not in st.session_state:
|
71 |
st.session_state.extracted_text = None
|
72 |
|
|
|
|
|
|
|
73 |
# Upload image
|
74 |
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
75 |
|
|
|
77 |
# Convert the uploaded file to an image
|
78 |
img = Image.open(uploaded_file)
|
79 |
|
|
|
|
|
|
|
|
|
80 |
# Display the uploaded image
|
81 |
st.image(img, caption="Uploaded Image", use_column_width=True)
|
82 |
|
83 |
+
# Check if the uploaded image is different from the current one
|
84 |
+
if st.session_state.current_image != uploaded_file:
|
85 |
+
st.session_state.current_image = uploaded_file
|
86 |
+
|
87 |
+
# Process the image with streaming
|
88 |
+
streamer = process_file_streaming(img, model, processor)
|
89 |
+
|
90 |
+
# Display streaming results
|
91 |
+
st.subheader("Extracted Text (Streaming)")
|
92 |
+
text_placeholder = st.empty()
|
93 |
+
collected_text = ""
|
94 |
+
|
95 |
+
for new_text in streamer:
|
96 |
+
collected_text += new_text
|
97 |
+
text_placeholder.markdown(collected_text)
|
98 |
+
|
99 |
+
# Store the final extracted text
|
100 |
+
st.session_state.extracted_text = collected_text
|
101 |
+
|
102 |
+
else:
|
103 |
+
# Display the previously extracted text
|
104 |
+
st.subheader("Extracted Text")
|
105 |
+
st.write(st.session_state.extracted_text)
|
106 |
|
107 |
# Keyword Search
|
108 |
keyword = st.text_input("Enter keyword to search in the extracted text")
|
|
|
110 |
if keyword.lower() in st.session_state.extracted_text.lower():
|
111 |
highlighted_text = st.session_state.extracted_text.replace(keyword, f"**{keyword}**")
|
112 |
st.subheader("Keyword Found")
|
113 |
+
st.markdown(highlighted_text)
|
114 |
else:
|
115 |
st.write("Keyword not found in the extracted text.")
|
116 |
elif keyword:
|
117 |
+
st.write("Please upload an image first before searching.")
|
|