import streamlit as st from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer from qwen_vl_utils import process_vision_info import torch from PIL import Image from threading import Thread @st.cache_resource def load_model(): model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", torch_dtype=torch.float32, device_map=None ).to("cpu") min_pixels = 256*28*28 max_pixels = 1280*28*28 processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) return model, processor def process_file_streaming(img, model, processor): messages = [ { "role": "system", "content": "You are an AI assistant specialized in reading and extracting text from images. Your task is to report the actual words and characters visible in the image, exactly as they appear, maintaining the original language (Hindi or English)." }, { "role": "user", "content": [ { "type": "image", "image": img, }, { "type": "text", "text": "Read and extract ALL text visible in this image. Provide ONLY the actual words, numbers, and characters you see, exactly as they appear." }, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cpu") # Stream tokens streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=600) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() return streamer # Load model and processor once model, processor = load_model() # Streamlit app st.title("OCR Application with Real-Time Token Streaming") # Initialize session state variables if 'current_image' not in st.session_state: st.session_state.current_image = None if 'extracted_text' not in st.session_state: st.session_state.extracted_text = None # Upload image uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: # Convert the uploaded file to an image img = Image.open(uploaded_file) # Display the uploaded image st.image(img, caption="Uploaded Image", use_column_width=True) # Check if the uploaded image is different from the current one if st.session_state.current_image != uploaded_file: st.session_state.current_image = uploaded_file # Process the image with streaming streamer = process_file_streaming(img, model, processor) # Display streaming results st.subheader("Extracted Text (Streaming)") text_placeholder = st.empty() collected_text = "" for new_text in streamer: collected_text += new_text text_placeholder.markdown(collected_text) # Store the final extracted text st.session_state.extracted_text = collected_text else: # Display the previously extracted text st.subheader("Extracted Text") st.write(st.session_state.extracted_text) # Keyword Search keyword = st.text_input("Enter keyword to search in the extracted text") if keyword and st.session_state.extracted_text: if keyword.lower() in st.session_state.extracted_text.lower(): highlighted_text = st.session_state.extracted_text.replace(keyword, f"**{keyword}**") st.subheader("Keyword Found") st.markdown(highlighted_text) else: st.write("Keyword not found in the extracted text.") elif keyword: st.write("Please upload an image first before searching.")