|
import streamlit as st |
|
from streamlit_chat import message |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.document_loaders import PyPDFLoader, DirectoryLoader |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.llms import CTransformers |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import FAISS |
|
from langchain.memory import ConversationBufferMemory |
|
|
|
|
|
loader = DirectoryLoader('data/',glob="*.pdf",loader_cls=PyPDFLoader) |
|
documents = loader.load() |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,chunk_overlap=50) |
|
text_chunks = text_splitter.split_documents(documents) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", |
|
model_kwargs={'device':"cpu"}) |
|
|
|
|
|
vector_store = FAISS.from_documents(text_chunks,embeddings) |
|
|
|
|
|
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",model_type="llama", |
|
config={'max_new_tokens':128,'temperature':0.01}) |
|
|
|
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) |
|
|
|
chain = ConversationalRetrievalChain.from_llm(llm=llm,chain_type='stuff', |
|
retriever=vector_store.as_retriever(search_kwargs={"k":2}), |
|
memory=memory) |
|
|
|
st.title("HealthCare ChatBot π§π½ββοΈ") |
|
def conversation_chat(query): |
|
result = chain({"question": query, "chat_history": st.session_state['history']}) |
|
st.session_state['history'].append((query, result["answer"])) |
|
return result["answer"] |
|
|
|
def initialize_session_state(): |
|
if 'history' not in st.session_state: |
|
st.session_state['history'] = [] |
|
|
|
if 'generated' not in st.session_state: |
|
st.session_state['generated'] = ["Hello! Ask me anything about π€"] |
|
|
|
if 'past' not in st.session_state: |
|
st.session_state['past'] = ["Hey! π"] |
|
|
|
def display_chat_history(): |
|
reply_container = st.container() |
|
container = st.container() |
|
|
|
with container: |
|
with st.form(key='my_form', clear_on_submit=True): |
|
user_input = st.text_input("Question:", placeholder="Ask about your Mental Health", key='input') |
|
submit_button = st.form_submit_button(label='Send') |
|
|
|
if submit_button and user_input: |
|
output = conversation_chat(user_input) |
|
|
|
st.session_state['past'].append(user_input) |
|
st.session_state['generated'].append(output) |
|
|
|
if st.session_state['generated']: |
|
with reply_container: |
|
for i in range(len(st.session_state['generated'])): |
|
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") |
|
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") |
|
|
|
|
|
initialize_session_state() |
|
|
|
display_chat_history() |