Spaces:
Sleeping
Sleeping
import torch | |
from transformers import pipeline | |
import gradio as gr | |
# Setup device | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# Load the ASR model pipeline | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-small.en", | |
chunk_length_s=30, | |
device=device, | |
) | |
# Function to make prediction from audio input | |
def transcribe(audio): | |
# Convert Gradio input to the format expected by the ASR pipeline | |
prediction = pipe(audio, batch_size=8)["text"] | |
return prediction | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(type="filepath"), # Removed 'source' argument | |
outputs="text", | |
title="Speech to Text with Whisper Model", | |
description="Record your voice and transcribe it to text using OpenAI Whisper model." | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch(share=True) | |