import torch from transformers import pipeline import gradio as gr # Setup device device = "cuda:0" if torch.cuda.is_available() else "cpu" # Load the ASR model pipeline pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-small.en", chunk_length_s=30, device=device, ) # Function to make prediction from audio input def transcribe(audio): # Convert Gradio input to the format expected by the ASR pipeline prediction = pipe(audio, batch_size=8)["text"] return prediction # Define the Gradio interface iface = gr.Interface( fn=transcribe, inputs=gr.Audio(type="filepath"), # Removed 'source' argument outputs="text", title="Speech to Text with Whisper Model", description="Record your voice and transcribe it to text using OpenAI Whisper model." ) # Launch the interface if __name__ == "__main__": iface.launch(share=True)