Commit
·
11b8c2d
1
Parent(s):
9a01b6b
Add statistics and recall to validation, but for ORIGINAL EDGE TYPE
Browse files- pages/validate.py +184 -77
pages/validate.py
CHANGED
@@ -13,6 +13,9 @@ import matplotlib.pyplot as plt
|
|
13 |
plt.rcParams['font.sans-serif'] = 'Arial'
|
14 |
import matplotlib.colors as mcolors
|
15 |
|
|
|
|
|
|
|
16 |
# Custom and other imports
|
17 |
import project_config
|
18 |
from utils import load_kg, load_kg_edges
|
@@ -45,85 +48,189 @@ relation = st.session_state.query['relation']
|
|
45 |
target_node_type = st.session_state.query['target_node_type']
|
46 |
predictions = st.session_state.predictions
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
# Convert tuple to hex
|
52 |
-
def rgba_to_hex(rgba):
|
53 |
-
return mcolors.to_hex(rgba[:3])
|
54 |
-
|
55 |
-
with st.spinner('Searching known relationships...'):
|
56 |
-
|
57 |
-
# Subset existing edges
|
58 |
-
edge_subset = kg_edges[(kg_edges.x_type == source_node_type) & (kg_edges.x_name == source_node)]
|
59 |
-
edge_subset = edge_subset[edge_subset.y_type == target_node_type]
|
60 |
-
|
61 |
-
# Merge edge subset with predictions
|
62 |
-
edges_in_kg = pd.merge(predictions, edge_subset[['relation', 'y_id']], left_on = 'ID', right_on = 'y_id', how = 'right')
|
63 |
-
edges_in_kg = edges_in_kg.sort_values(by = 'Score', ascending = False)
|
64 |
-
edges_in_kg = edges_in_kg.drop(columns = 'y_id')
|
65 |
-
|
66 |
-
# Rename relation to ground-truth
|
67 |
-
edges_in_kg = edges_in_kg[['relation'] + [col for col in edges_in_kg.columns if col != 'relation']]
|
68 |
-
edges_in_kg = edges_in_kg.rename(columns = {'relation': 'Known Relation'})
|
69 |
-
|
70 |
-
# If there exist edges in KG
|
71 |
-
if len(edges_in_kg) > 0:
|
72 |
-
|
73 |
-
with st.spinner('Saving validation results...'):
|
74 |
-
|
75 |
-
# Cast long to wide
|
76 |
-
val_results = edge_subset[['relation', 'y_id']].pivot_table(index='y_id', columns='relation', aggfunc='size', fill_value=0)
|
77 |
-
val_results = (val_results > 0).astype(int).reset_index()
|
78 |
-
val_results.columns = [val_results.columns[0]] + [x.replace('_', ' ').title() for x in val_results.columns[1:]]
|
79 |
-
|
80 |
-
# Save validation results to session state
|
81 |
-
st.session_state.validation = val_results
|
82 |
-
|
83 |
-
with st.spinner('Plotting known relationships...'):
|
84 |
-
|
85 |
-
# Define a color map for different relations
|
86 |
-
color_map = plt.get_cmap('tab10')
|
87 |
-
|
88 |
-
# Group by relation and create separate plots
|
89 |
-
relations = edges_in_kg['Known Relation'].unique()
|
90 |
-
for idx, relation in enumerate(relations):
|
91 |
-
|
92 |
-
relation_data = edges_in_kg[edges_in_kg['Known Relation'] == relation]
|
93 |
-
|
94 |
-
# Get a color from the color map
|
95 |
-
color = color_map(idx % color_map.N)
|
96 |
-
|
97 |
-
fig, ax = plt.subplots(figsize=(10, 3))
|
98 |
-
ax.plot(predictions['Rank'], predictions['Score'])
|
99 |
-
ax.set_xlabel('Rank', fontsize=12)
|
100 |
-
ax.set_ylabel('Score', fontsize=12)
|
101 |
-
ax.set_xlim(1, predictions['Rank'].max())
|
102 |
-
|
103 |
-
for i, node in relation_data.iterrows():
|
104 |
-
ax.axvline(node['Rank'], color=color, linestyle='--', label=node['Name'])
|
105 |
-
# ax.text(node['Rank'] + 100, node['Score'], node['Name'], fontsize=10, color=color)
|
106 |
-
|
107 |
-
# ax.set_title(f'{relation.replace("_", "-")}')
|
108 |
-
# ax.legend()
|
109 |
-
color_hex = rgba_to_hex(color)
|
110 |
|
111 |
-
|
112 |
-
st.markdown(f"<h3 style='color:{color_hex}'>{relation.replace('_', ' ').title()}</h2>", unsafe_allow_html=True)
|
113 |
|
114 |
-
|
115 |
-
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
st.dataframe(relation_data, use_container_width=True)
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
plt.rcParams['font.sans-serif'] = 'Arial'
|
14 |
import matplotlib.colors as mcolors
|
15 |
|
16 |
+
# Import metrics
|
17 |
+
from sklearn.metrics import roc_auc_score, average_precision_score, accuracy_score, f1_score
|
18 |
+
|
19 |
# Custom and other imports
|
20 |
import project_config
|
21 |
from utils import load_kg, load_kg_edges
|
|
|
48 |
target_node_type = st.session_state.query['target_node_type']
|
49 |
predictions = st.session_state.predictions
|
50 |
|
51 |
+
@st.experimental_fragment()
|
52 |
+
def plot_options():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
st.markdown("<h5 style='margin-top: 10px;'>Plotting Options</h5>", unsafe_allow_html=True)
|
|
|
55 |
|
56 |
+
# Checkbox to show lines
|
57 |
+
show_lines = st.checkbox('Show rug plot of existing edges?', value = False)
|
58 |
|
59 |
+
# Slider for x-axis limit
|
60 |
+
axis_limits = st.slider('Define the range of ranks to visualize.',
|
61 |
+
min_value=0, max_value=predictions['Rank'].max(),
|
62 |
+
value=(0, predictions['Rank'].max()), step=1000)
|
63 |
+
|
64 |
+
# Update session state
|
65 |
+
st.session_state.show_lines = show_lines
|
66 |
+
st.session_state.axis_limits = axis_limits
|
|
|
67 |
|
68 |
+
# Get plot options
|
69 |
+
plot_options()
|
70 |
+
|
71 |
+
# Set default options
|
72 |
+
if 'show_lines' not in st.session_state:
|
73 |
+
st.session_state.show_lines = False
|
74 |
+
if 'axis_limits' not in st.session_state:
|
75 |
+
st.session_state.axis_limits = (0, predictions['Rank'].max())
|
76 |
|
77 |
+
# Button to update plot
|
78 |
+
col1, col2, col3 = st.columns([4, 2, 4])
|
79 |
+
with col2:
|
80 |
+
update_button = st.button('Generate Plot')
|
81 |
+
|
82 |
+
# Horizontal line
|
83 |
+
st.markdown('---')
|
84 |
+
|
85 |
+
if update_button:
|
86 |
+
|
87 |
+
kg_nodes = load_kg()
|
88 |
+
kg_edges = load_kg_edges()
|
89 |
+
|
90 |
+
# Convert tuple to hex
|
91 |
+
def rgba_to_hex(rgba):
|
92 |
+
return mcolors.to_hex(rgba[:3])
|
93 |
+
|
94 |
+
with st.spinner('Searching known relationships...'):
|
95 |
+
|
96 |
+
# Subset existing edges
|
97 |
+
edge_subset = kg_edges[(kg_edges.x_type == source_node_type) & (kg_edges.x_name == source_node)]
|
98 |
+
edge_subset = edge_subset[edge_subset.y_type == target_node_type]
|
99 |
+
|
100 |
+
# Merge edge subset with predictions
|
101 |
+
edges_in_kg = pd.merge(predictions, edge_subset[['relation', 'y_id']], left_on = 'ID', right_on = 'y_id', how = 'right')
|
102 |
+
edges_in_kg = edges_in_kg.sort_values(by = 'Score', ascending = False)
|
103 |
+
edges_in_kg = edges_in_kg.drop(columns = 'y_id')
|
104 |
+
|
105 |
+
# Rename relation to ground-truth
|
106 |
+
edges_in_kg = edges_in_kg[['relation'] + [col for col in edges_in_kg.columns if col != 'relation']]
|
107 |
+
edges_in_kg = edges_in_kg.rename(columns = {'relation': 'Known Relation'})
|
108 |
+
|
109 |
+
# If there exist edges in KG
|
110 |
+
if len(edges_in_kg) > 0:
|
111 |
+
|
112 |
+
with st.spinner('Saving validation results...'):
|
113 |
+
|
114 |
+
# Cast long to wide
|
115 |
+
val_results = edge_subset[['relation', 'y_id']].pivot_table(index='y_id', columns='relation', aggfunc='size', fill_value=0)
|
116 |
+
val_results = (val_results > 0).astype(int).reset_index()
|
117 |
+
val_results.columns = [val_results.columns[0]] + [x.replace('_', ' ').title() for x in val_results.columns[1:]]
|
118 |
+
|
119 |
+
# Save validation results to session state
|
120 |
+
st.session_state.validation = val_results
|
121 |
+
|
122 |
+
with st.spinner('Plotting known relationships...'):
|
123 |
+
|
124 |
+
# Define a color map for different relations
|
125 |
+
color_map = plt.get_cmap('tab10')
|
126 |
+
|
127 |
+
# Group by relation and create separate plots
|
128 |
+
relations = edges_in_kg['Known Relation'].unique()
|
129 |
+
for idx, relation in enumerate(relations):
|
130 |
+
|
131 |
+
relation_data = edges_in_kg[edges_in_kg['Known Relation'] == relation]
|
132 |
+
|
133 |
+
# Get a color from the color map
|
134 |
+
color = color_map(idx % color_map.N)
|
135 |
+
|
136 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
137 |
+
ax.plot(predictions['Rank'], predictions['Score'], color = 'black', linewidth = 1.5, zorder = 2)
|
138 |
+
ax.set_xlabel('Rank', fontsize=12)
|
139 |
+
ax.set_ylabel('Score', fontsize=12)
|
140 |
+
# ax.set_xlim(1, predictions['Rank'].max())
|
141 |
+
# ax.set_xlim(axis_limits)
|
142 |
+
ax.set_xlim(st.session_state.axis_limits)
|
143 |
+
|
144 |
+
for i, node in relation_data.iterrows():
|
145 |
+
if st.session_state.show_lines:
|
146 |
+
ax.axvline(node['Rank'], color=color, linestyle='--', label=node['Name'], zorder = 3)
|
147 |
+
ax.scatter(node['Rank'], node['Score'], color=color, zorder=3) # s=15
|
148 |
+
# ax.text(node['Rank'] + 100, node['Score'], node['Name'], fontsize=10, color=color)
|
149 |
+
|
150 |
+
# Also calculate and plot recall at K
|
151 |
+
ax2 = ax.twinx()
|
152 |
+
|
153 |
+
# Calculate recall at K for all Rank
|
154 |
+
recall_at_k = []
|
155 |
+
for k in range(1, predictions['Rank'].max() + 1):
|
156 |
+
recall = 100*len(relation_data[relation_data['Rank'] <= k]) / len(relation_data)
|
157 |
+
recall_at_k.append(recall)
|
158 |
+
|
159 |
+
ax2.plot(range(1, predictions['Rank'].max() + 1), recall_at_k,
|
160 |
+
color = 'red', linestyle = '--', label = 'Recall at K', zorder = 4, linewidth = 2)
|
161 |
+
|
162 |
+
# Set labels
|
163 |
+
ax2.set_ylabel('Recall at K (%)', fontsize=12, color='red')
|
164 |
+
|
165 |
+
# Add grid
|
166 |
+
ax.grid(True, linestyle=':', alpha=0.5, zorder=0)
|
167 |
+
|
168 |
+
# ax.set_title(f'{relation.replace("_", "-")}')
|
169 |
+
# ax.legend()
|
170 |
+
color_hex = rgba_to_hex(color)
|
171 |
+
|
172 |
+
# Write header in color of relation
|
173 |
+
st.markdown(f"<h3 style='color:{color_hex}'>{relation.replace('_', ' ').title()}</h3>", unsafe_allow_html=True)
|
174 |
+
|
175 |
+
# Show plot
|
176 |
+
st.pyplot(fig)
|
177 |
+
|
178 |
+
# Create recall at K table
|
179 |
+
k_vals = [10, 50, 100, 500, 1000, 5000, 10000]
|
180 |
+
recall_at_k = []
|
181 |
+
for k in k_vals:
|
182 |
+
recall = 100*len(relation_data[relation_data['Rank'] <= k]) / len(relation_data)
|
183 |
+
recall = f"{recall:.2f}%"
|
184 |
+
recall_at_k.append(recall)
|
185 |
+
recall_df = pd.DataFrame({'K': k_vals, 'Recall': recall_at_k})
|
186 |
+
|
187 |
+
# Transpose and display recall at K
|
188 |
+
recall_df = recall_df.T
|
189 |
+
recall_df.columns = [f"k = {k:.0f}" for k in recall_df.iloc[0]]
|
190 |
+
recall_df = recall_df.drop('K')
|
191 |
+
st.markdown('**Recall at $k$:**')
|
192 |
+
st.dataframe(recall_df, use_container_width=True)
|
193 |
+
|
194 |
+
# Compute other statistics
|
195 |
+
st.markdown('**Statistics:**')
|
196 |
+
|
197 |
+
# Binarize score
|
198 |
+
pred_threshold = 0.5
|
199 |
+
raw_score = predictions['Score']
|
200 |
+
binary_score = (raw_score > pred_threshold).astype(int)
|
201 |
+
true_label = np.zeros(len(predictions))
|
202 |
+
|
203 |
+
# Set true label to 1 for known relations
|
204 |
+
|
205 |
+
# Reset index
|
206 |
+
predictions_idx = predictions.copy().reset_index(drop = True)
|
207 |
+
true_label[predictions_idx[predictions_idx['ID'].isin(relation_data['ID'])].index] = 1
|
208 |
+
|
209 |
+
# Compute scores
|
210 |
+
accuracy = accuracy_score(true_label, binary_score)
|
211 |
+
ap = average_precision_score(true_label, raw_score)
|
212 |
+
f1 = f1_score(true_label, binary_score, average = 'micro')
|
213 |
+
try:
|
214 |
+
auc = roc_auc_score(true_label, raw_score)
|
215 |
+
except ValueError:
|
216 |
+
auc = 0.5
|
217 |
+
|
218 |
+
# Create dataframe
|
219 |
+
stats_df = pd.DataFrame({'Accuracy': [accuracy], 'AUC': [auc], 'AP': [ap], 'F1': [f1]})
|
220 |
+
stats_df.index = ["Value"]
|
221 |
+
st.dataframe(stats_df, use_container_width=True)
|
222 |
+
|
223 |
+
# Drop known relation column
|
224 |
+
st.markdown('**Known Relationships:**')
|
225 |
+
relation_data = relation_data.drop(columns = 'Known Relation')
|
226 |
+
if target_node_type not in ['disease', 'anatomy']:
|
227 |
+
st.dataframe(relation_data, use_container_width=True,
|
228 |
+
column_config={"Database": st.column_config.LinkColumn(width = "small",
|
229 |
+
help = "Click to visit external database.",
|
230 |
+
display_text = st.session_state.display_database)})
|
231 |
+
else:
|
232 |
+
st.dataframe(relation_data, use_container_width=True)
|
233 |
+
|
234 |
+
else:
|
235 |
+
|
236 |
+
st.error('No ground truth relationships found for the given query in the knowledge graph.', icon="✖️")
|