Spaces:
Running
Running
File size: 6,027 Bytes
3f02d46 389a372 3f02d46 389a372 3f02d46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PSET 1: Bottom-Up Synthesis\n",
"\n",
"I follow Algorithm 1 in the BUSTLE paper:\n",
"\n",
"> Odena, A. *et al.* BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration. in *9th International Conference on Learning Representations*; 2021 May 3-7; Austria.\n",
"\n",
"First, I import the required libraries."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import itertools\n",
"\n",
"# argument parser for command line arguments\n",
"import argparse\n",
"\n",
"# import arithmetic module\n",
"# from arithmetic import *\n",
"from examples import examples\n",
"import config"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, I define variables as proxies for command-line arguments provided to the synthesizer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"domain = \"arithmetic\"\n",
"examples_key = \"addition\"\n",
"examples = examples[examples_key]\n",
"max_weight = 3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I provide examples of arithmetic operations."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"ARTHIMETIC OPERATORS\n",
"This file contains Python classes that define the arithmetic operators for program synthesis.\n",
"'''\n",
"\n",
"'''\n",
"CLASS DEFINITIONS\n",
"''' \n",
"\n",
"class IntegerValue:\n",
" '''\n",
" Class to represent an arithmetic value.\n",
" '''\n",
" def __init__(self, value):\n",
" self.value = value\n",
" self.type = int\n",
"\n",
"class Add:\n",
" '''\n",
" Operator to add two numerical values.\n",
" '''\n",
" def __init__(self):\n",
" self.arity = 2 # number of arguments of function\n",
" self.weight = 1 # weight of function\n",
" self.return_type = int # return type of function\n",
"\n",
" def __call__(self, x, y):\n",
" return x + y\n",
" \n",
" def str(x, y):\n",
" return f\"{x} + {y}\"\n",
"\n",
"class Subtract:\n",
" '''\n",
" Operator to subtract two numerical values.\n",
" '''\n",
" def __init__(self):\n",
" self.arity = 2 # number of arguments of function\n",
" self.weight = 1 # weight of function\n",
" self.return_type = int # return type of function\n",
"\n",
" def __call__(self, x, y):\n",
" return x - y\n",
" \n",
" def str(x, y):\n",
" return f\"{x} - {y}\"\n",
" \n",
"class Multiply:\n",
" '''\n",
" Operator to multiply two numerical values.\n",
" '''\n",
" def __init__(self):\n",
" self.arity = 2 # number of arguments of function\n",
" self.weight = 1 # weight of function\n",
" self.return_type = int # return type of function\n",
"\n",
" def __call__(self, x, y):\n",
" return x * y\n",
" \n",
" def str(x, y):\n",
" return f\"{x} * {y}\" \n",
"\n",
"class Divide:\n",
" '''\n",
" Operator to divide two numerical values.\n",
" '''\n",
" def __init__(self):\n",
" self.arity = 2 # number of arguments of function\n",
" self.weight = 1 # weight of function\n",
" self.return_type = int # return type of function\n",
"\n",
" def __call__(self, x, y):\n",
" try: # check for division by zero error\n",
" return x / y\n",
" except ZeroDivisionError:\n",
" return None\n",
" \n",
" def str(x, y):\n",
" return f\"{x} / {y}\"\n",
"\n",
"\n",
"'''\n",
"FUNCTION DEFINITIONS\n",
"''' \n",
"\n",
"\n",
"'''\n",
"GLOBAL CONSTANTS\n",
"''' \n",
"\n",
"# define operators\n",
"arithmetic_operators = [Add(), Subtract(), Multiply(), Divide()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I define input-output examples."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I define a function to determine observational equivalence."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def observationally_equivalent(a, b):\n",
" \"\"\"\n",
" Returns True if a and b are observationally equivalent, False otherwise.\n",
" \"\"\"\n",
"\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, I define the bottom-up synthesis algorithm."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# initialize program bank\n",
"program_bank = []\n",
"\n",
"# iterate over each level\n",
"for i in range(1, max_level):\n",
"\n",
" # define level program bank\n",
" level_program_bank = []\n",
"\n",
" for op in arithmetic_operators():\n",
"\n",
" break"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|