File size: 6,027 Bytes
3f02d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389a372
3f02d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389a372
3f02d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# PSET 1: Bottom-Up Synthesis\n",
    "\n",
    "I follow Algorithm 1 in the BUSTLE paper:\n",
    "\n",
    "> Odena, A. *et al.* BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration. in *9th International Conference on Learning Representations*; 2021 May 3-7; Austria.\n",
    "\n",
    "First, I import the required libraries."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import itertools\n",
    "\n",
    "# argument parser for command line arguments\n",
    "import argparse\n",
    "\n",
    "# import arithmetic module\n",
    "# from arithmetic import *\n",
    "from examples import examples\n",
    "import config"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "First, I define variables as proxies for command-line arguments provided to the synthesizer."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "domain = \"arithmetic\"\n",
    "examples_key = \"addition\"\n",
    "examples = examples[examples_key]\n",
    "max_weight = 3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "I provide examples of arithmetic operations."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "'''\n",
    "ARTHIMETIC OPERATORS\n",
    "This file contains Python classes that define the arithmetic operators for program synthesis.\n",
    "'''\n",
    "\n",
    "'''\n",
    "CLASS DEFINITIONS\n",
    "''' \n",
    "\n",
    "class IntegerValue:\n",
    "    '''\n",
    "    Class to represent an arithmetic value.\n",
    "    '''\n",
    "    def __init__(self, value):\n",
    "        self.value = value\n",
    "        self.type = int\n",
    "\n",
    "class Add:\n",
    "    '''\n",
    "    Operator to add two numerical values.\n",
    "    '''\n",
    "    def __init__(self):\n",
    "        self.arity = 2          # number of arguments of function\n",
    "        self.weight = 1         # weight of function\n",
    "        self.return_type = int  # return type of function\n",
    "\n",
    "    def __call__(self, x, y):\n",
    "        return x + y\n",
    "    \n",
    "    def str(x, y):\n",
    "        return f\"{x} + {y}\"\n",
    "\n",
    "class Subtract:\n",
    "    '''\n",
    "    Operator to subtract two numerical values.\n",
    "    '''\n",
    "    def __init__(self):\n",
    "        self.arity = 2          # number of arguments of function\n",
    "        self.weight = 1         # weight of function\n",
    "        self.return_type = int  # return type of function\n",
    "\n",
    "    def __call__(self, x, y):\n",
    "        return x - y\n",
    "    \n",
    "    def str(x, y):\n",
    "        return f\"{x} - {y}\"\n",
    "    \n",
    "class Multiply:\n",
    "    '''\n",
    "    Operator to multiply two numerical values.\n",
    "    '''\n",
    "    def __init__(self):\n",
    "        self.arity = 2          # number of arguments of function\n",
    "        self.weight = 1         # weight of function\n",
    "        self.return_type = int  # return type of function\n",
    "\n",
    "    def __call__(self, x, y):\n",
    "        return x * y\n",
    "    \n",
    "    def str(x, y):\n",
    "        return f\"{x} * {y}\" \n",
    "\n",
    "class Divide:\n",
    "    '''\n",
    "    Operator to divide two numerical values.\n",
    "    '''\n",
    "    def __init__(self):\n",
    "        self.arity = 2          # number of arguments of function\n",
    "        self.weight = 1         # weight of function\n",
    "        self.return_type = int  # return type of function\n",
    "\n",
    "    def __call__(self, x, y):\n",
    "        try: # check for division by zero error\n",
    "            return x / y\n",
    "        except ZeroDivisionError:\n",
    "            return None\n",
    "    \n",
    "    def str(x, y):\n",
    "        return f\"{x} / {y}\"\n",
    "\n",
    "\n",
    "'''\n",
    "FUNCTION DEFINITIONS\n",
    "''' \n",
    "\n",
    "\n",
    "'''\n",
    "GLOBAL CONSTANTS\n",
    "''' \n",
    "\n",
    "# define operators\n",
    "arithmetic_operators = [Add(), Subtract(), Multiply(), Divide()]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "I define input-output examples."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "I define a function to determine observational equivalence."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def observationally_equivalent(a, b):\n",
    "    \"\"\"\n",
    "    Returns True if a and b are observationally equivalent, False otherwise.\n",
    "    \"\"\"\n",
    "\n",
    "    pass"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, I define the bottom-up synthesis algorithm."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# initialize program bank\n",
    "program_bank = []\n",
    "\n",
    "# iterate over each level\n",
    "for i in range(1, max_level):\n",
    "\n",
    "    # define level program bank\n",
    "    level_program_bank = []\n",
    "\n",
    "    for op in arithmetic_operators():\n",
    "\n",
    "        break"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}