Spaces:
Sleeping
Sleeping
File size: 6,732 Bytes
ecbc9c7 3f02d46 2056e9c ecbc9c7 3f02d46 5b04db9 3f02d46 a417ea3 6b5a85b 5b04db9 a417ea3 389a372 ecbc9c7 3f02d46 a417ea3 3f02d46 ea7fc19 3f02d46 a417ea3 3f02d46 6b5a85b 389a372 3f02d46 a417ea3 6b5a85b a417ea3 6b5a85b a417ea3 5b04db9 a417ea3 5b04db9 6b5a85b 5b04db9 6b5a85b ea7fc19 6b5a85b 5b04db9 a417ea3 5b04db9 a417ea3 3f02d46 a417ea3 3f02d46 5b04db9 6b5a85b 5b04db9 6b5a85b 5b04db9 6b5a85b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
'''
BOTTOM UP ENUMERATIVE SYNTHESIS
Ayush Noori
CS252R, Fall 2020
Example of usage:
python synthesis.py --domain arithmetic --examples addition
'''
# load libraries
import numpy as np
import argparse
import itertools
import time
# import examples
from arithmetic import *
from strings import *
from abstract_syntax_tree import *
from examples import example_set, check_examples
import config
# PARSE ARGUMENTS
def parse_args():
'''
Parse command line arguments.
'''
parser = argparse.ArgumentParser(description="Bottom-up enumerative synthesis in Python.")
# define valid choices for the 'domain' argument
valid_domain_choices = ["arithmetic", "strings"]
# add examples
parser.add_argument('--domain', type=str, required=True, # default="arithmetic",
choices=valid_domain_choices,
help='Domain of synthesis (either "arithmetic" or "string").')
parser.add_argument('--examples', dest='examples_key', type=str, required=True, # default="addition",
choices=example_set.keys(),
help='Examples to synthesize program from. Must be a valid key in the "example_set" dictionary.')
parser.add_argument('--max-weight', type=int, required=False, default=3,
help='Maximum weight of programs to consider before terminating search.')
args = parser.parse_args()
return args
# EXTRACT CONSTANTS AND VARIABLES
def extract_constants(examples):
'''
Extracts the constants from the input-output examples. Also constructs variables as needed
based on the input-output examples, and adds them to the list of constants.
'''
# check validity of provided examples
# if valid, extract arity and argument types
arity, arg_types = check_examples(examples)
# initialize list of constants
constants = []
# get unique set of inputs
inputs = [input for example in examples for input in example[0]]
inputs = set(inputs)
# add 1 to the set of inputs
inputs.add(1)
# extract constants in input
for input in inputs:
if type(input) == int:
constants.append(IntegerConstant(input))
elif type(input) == str:
constants.append(StringConstant(input))
pass
else:
raise Exception("Input of unknown type.")
# initialize list of variables
variables = []
# extract variables in input
for position, arg in enumerate(arg_types):
if arg == int:
variables.append(IntegerVariable(position))
elif arg == str:
variables.append(StringVariable(position))
else:
raise Exception("Input of unknown type.")
return constants + variables
# CHECK OBSERVATIONAL EQUIVALENCE
def observationally_equivalent(program_a, program_b, examples):
"""
Returns True if Program A and Program B are observationally equivalent, False otherwise.
"""
inputs = [example[0] for example in examples]
a_output = [program_a.evaluate(input) for input in inputs]
b_output = [program_b.evaluate(input) for input in inputs]
return a_output == b_output
# CHECK CORRECTNESS
def check_program(program, examples):
'''
Check whether the program satisfies the input-output examples.
'''
inputs = [example[0] for example in examples]
outputs = [example[1] for example in examples]
program_output = [program.evaluate(input) for input in inputs]
return program_output == outputs
# RUN SYNTHESIZER
def run_synthesizer(args):
'''
Run bottom-up enumerative synthesis.
'''
# retrieve selected input-output examples
examples = example_set[args.examples_key]
# extract constants from examples
program_bank = extract_constants(examples)
program_bank_str = [p.str() for p in program_bank]
print("\nSynthesis Log:")
print(f"- Extracted {len(program_bank)} constants from examples.")
# define operators
if args.domain == "arithmetic":
operators = arithmetic_operators
elif args.domain == "strings":
operators = string_operators
else:
raise Exception('Domain not recognized. Must be either "arithmetic" or "string".')
# iterate over each level
for weight in range(2, args.max_weight):
# print message
print(f"- Searching level {weight} with {len(program_bank)} primitives.")
# iterate over each operator
for op in operators:
# get all possible combinations of primitives in program bank
combinations = itertools.combinations(program_bank, op.arity)
# iterate over each combination
for combination in combinations:
# get type signature
type_signature = [p.type for p in combination]
# check if type signature matches operator
if type_signature != op.arg_types:
continue
# check that sum of weights of arguments <= w
if sum([p.weight for p in combination]) > weight:
continue
# create new program
program = OperatorNode(op, combination)
# check if program is in program bank using string representation
if program.str() in program_bank_str:
continue
# check if program is observationally equivalent to any program in program bank
if any([observationally_equivalent(program, p, examples) for p in program_bank]):
continue
# add program to program bank
program_bank.append(program)
program_bank_str.append(program.str())
# check if program passes all examples
if check_program(program, examples):
return(program)
# return None if no program is found
return None
if __name__ == '__main__':
# parse command line arguments
args = parse_args()
# print(args)
# run bottom-up enumerative synthesis
start_time = time.time()
program = run_synthesizer(args)
end_time = time.time()
elapsed_time = round(end_time - start_time, 4)
# check if program was found
print("\nSynthesis Results:")
if program is None:
print(f"- Max weight of {args.max_weight} reached, no program found in {elapsed_time}s.")
else:
print(f"- Program found in {elapsed_time}s.")
print(f"- Program: {program.str()}")
print(f"- Program weight: {program.weight}")
print(f"- Program return type: {program.type.__name__}")
|