Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,98 @@
|
|
1 |
-
# app.py (Content of this file should be your 'gradio_code_debugged_v2' from previous steps)
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
from transformers import ViTModel, GPT2LMHeadModel, GPT2TokenizerFast, ViTFeatureExtractor, GPT2Config
|
6 |
-
from huggingface_hub import hf_hub_download
|
7 |
-
from PIL import Image
|
8 |
-
import asyncio
|
9 |
-
import concurrent.futures
|
10 |
-
|
11 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
|
13 |
-
# Load Model & Tokenizer
|
14 |
-
class ViT_GPT2_Captioner(nn.Module):
|
15 |
-
def __init__(self):
|
16 |
-
super(ViT_GPT2_Captioner, self).__init__()
|
17 |
-
self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
18 |
-
gpt2_config = GPT2Config.from_pretrained('gpt2')
|
19 |
-
gpt2_config.add_cross_attention = True
|
20 |
-
self.gpt2 = GPT2LMHeadModel.from_pretrained('gpt2', config=gpt2_config)
|
21 |
-
self.bridge = nn.Linear(self.vit.config.hidden_size, self.gpt2.config.n_embd)
|
22 |
-
for param in self.vit.parameters():
|
23 |
-
param.requires_grad = False
|
24 |
-
|
25 |
-
def forward(self, pixel_values, captions, attention_mask=None):
|
26 |
-
visual_features = self.vit(pixel_values=pixel_values).last_hidden_state
|
27 |
-
projected_features = self.bridge(visual_features[:, 0, :])
|
28 |
-
outputs = self.gpt2(input_ids=captions, attention_mask=attention_mask,
|
29 |
-
encoder_hidden_states=projected_features.unsqueeze(1),
|
30 |
-
encoder_attention_mask=torch.ones(projected_features.size(0), 1).to(projected_features.device))
|
31 |
-
return outputs.logits
|
32 |
-
|
33 |
-
model_path = hf_hub_download(repo_id="ayushrupapara/vit-gpt2-flickr8k-image-captioner", filename="model.pth") # Correct repo_id
|
34 |
-
model = ViT_GPT2_Captioner().to(device)
|
35 |
-
model.load_state_dict(torch.load(model_path, map_location=device))
|
36 |
-
model.eval()
|
37 |
-
|
38 |
-
tokenizer = GPT2TokenizerFast.from_pretrained("ayushrupapara/vit-gpt2-flickr8k-image-captioner", force_download=True) # Correct repo_id
|
39 |
-
tokenizer.pad_token = tokenizer.eos_token
|
40 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
|
41 |
-
|
42 |
-
import asyncio
|
43 |
-
import concurrent.futures
|
44 |
-
|
45 |
-
executor = concurrent.futures.ThreadPoolExecutor()
|
46 |
-
|
47 |
-
# beam search with tunning
|
48 |
-
async def generate_caption_async(image, num_beams, temperature):
|
49 |
-
loop = asyncio.get_event_loop()
|
50 |
-
return await loop.run_in_executor(executor, generate_caption_sync, image, num_beams, temperature)
|
51 |
-
|
52 |
-
def generate_caption_sync(image, num_beams=5, temperature=0.5, max_length=20):
|
53 |
-
#print(f"Received max_length: {max_length}, Type: {type(max_length)}")
|
54 |
-
max_length = int(max_length)
|
55 |
-
#print(f"Max_length after int conversion: {max_length}, Type: {type(max_length)}")
|
56 |
-
|
57 |
-
|
58 |
-
if image is None:
|
59 |
-
return "No image uploaded"
|
60 |
-
if isinstance(image, Image.Image):
|
61 |
-
image = image.convert("RGB")
|
62 |
-
else:
|
63 |
-
raise TypeError("Invalid image format. Expected a PIL Image.")
|
64 |
-
|
65 |
-
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
|
66 |
-
|
67 |
-
with torch.no_grad():
|
68 |
-
input_ids = torch.tensor([[tokenizer.eos_token_id]], device=device)
|
69 |
-
output_ids = model.gpt2.generate( # Using model.gpt2.generate for beam search
|
70 |
-
inputs=input_ids,
|
71 |
-
encoder_hidden_states=model.bridge(model.vit(pixel_values=pixel_values).last_hidden_state[:, 0, :]).unsqueeze(1),
|
72 |
-
max_length=max_length,
|
73 |
-
num_beams=num_beams,
|
74 |
-
temperature=temperature,
|
75 |
-
length_penalty=0.9,
|
76 |
-
no_repeat_ngram_size=2,
|
77 |
-
early_stopping=True,
|
78 |
-
pad_token_id=tokenizer.eos_token_id,
|
79 |
-
eos_token_id=tokenizer.eos_token_id,
|
80 |
-
)
|
81 |
-
|
82 |
-
caption = tokenizer.decode(output_ids.squeeze(), skip_special_tokens=True)
|
83 |
-
return caption
|
84 |
-
|
85 |
-
|
86 |
-
iface = gr.Interface(fn=generate_caption_async,
|
87 |
-
inputs=[
|
88 |
-
gr.Image(type="pil"),
|
89 |
-
gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Beams
|
90 |
-
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.7, label="Temperature")
|
91 |
-
],
|
92 |
-
outputs="text",
|
93 |
-
title="ViT-GPT2 Image Captioning",
|
94 |
-
description="Upload an image to get a caption.")
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
iface.launch() # Removed debug=True for deployment
|
|
|
1 |
+
# app.py (Content of this file should be your 'gradio_code_debugged_v2' from previous steps)
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import ViTModel, GPT2LMHeadModel, GPT2TokenizerFast, ViTFeatureExtractor, GPT2Config
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from PIL import Image
|
8 |
+
import asyncio
|
9 |
+
import concurrent.futures
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
# Load Model & Tokenizer
|
14 |
+
class ViT_GPT2_Captioner(nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super(ViT_GPT2_Captioner, self).__init__()
|
17 |
+
self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
18 |
+
gpt2_config = GPT2Config.from_pretrained('gpt2')
|
19 |
+
gpt2_config.add_cross_attention = True
|
20 |
+
self.gpt2 = GPT2LMHeadModel.from_pretrained('gpt2', config=gpt2_config)
|
21 |
+
self.bridge = nn.Linear(self.vit.config.hidden_size, self.gpt2.config.n_embd)
|
22 |
+
for param in self.vit.parameters():
|
23 |
+
param.requires_grad = False
|
24 |
+
|
25 |
+
def forward(self, pixel_values, captions, attention_mask=None):
|
26 |
+
visual_features = self.vit(pixel_values=pixel_values).last_hidden_state
|
27 |
+
projected_features = self.bridge(visual_features[:, 0, :])
|
28 |
+
outputs = self.gpt2(input_ids=captions, attention_mask=attention_mask,
|
29 |
+
encoder_hidden_states=projected_features.unsqueeze(1),
|
30 |
+
encoder_attention_mask=torch.ones(projected_features.size(0), 1).to(projected_features.device))
|
31 |
+
return outputs.logits
|
32 |
+
|
33 |
+
model_path = hf_hub_download(repo_id="ayushrupapara/vit-gpt2-flickr8k-image-captioner", filename="model.pth") # Correct repo_id
|
34 |
+
model = ViT_GPT2_Captioner().to(device)
|
35 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
36 |
+
model.eval()
|
37 |
+
|
38 |
+
tokenizer = GPT2TokenizerFast.from_pretrained("ayushrupapara/vit-gpt2-flickr8k-image-captioner", force_download=True) # Correct repo_id
|
39 |
+
tokenizer.pad_token = tokenizer.eos_token
|
40 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
|
41 |
+
|
42 |
+
import asyncio
|
43 |
+
import concurrent.futures
|
44 |
+
|
45 |
+
executor = concurrent.futures.ThreadPoolExecutor()
|
46 |
+
|
47 |
+
# beam search with tunning
|
48 |
+
async def generate_caption_async(image, num_beams, temperature):
|
49 |
+
loop = asyncio.get_event_loop()
|
50 |
+
return await loop.run_in_executor(executor, generate_caption_sync, image, num_beams, temperature)
|
51 |
+
|
52 |
+
def generate_caption_sync(image, num_beams=5, temperature=0.5, max_length=20):
|
53 |
+
#print(f"Received max_length: {max_length}, Type: {type(max_length)}")
|
54 |
+
max_length = int(max_length)
|
55 |
+
#print(f"Max_length after int conversion: {max_length}, Type: {type(max_length)}")
|
56 |
+
|
57 |
+
|
58 |
+
if image is None:
|
59 |
+
return "No image uploaded"
|
60 |
+
if isinstance(image, Image.Image):
|
61 |
+
image = image.convert("RGB")
|
62 |
+
else:
|
63 |
+
raise TypeError("Invalid image format. Expected a PIL Image.")
|
64 |
+
|
65 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
input_ids = torch.tensor([[tokenizer.eos_token_id]], device=device)
|
69 |
+
output_ids = model.gpt2.generate( # Using model.gpt2.generate for beam search
|
70 |
+
inputs=input_ids,
|
71 |
+
encoder_hidden_states=model.bridge(model.vit(pixel_values=pixel_values).last_hidden_state[:, 0, :]).unsqueeze(1),
|
72 |
+
max_length=max_length,
|
73 |
+
num_beams=num_beams,
|
74 |
+
temperature=temperature,
|
75 |
+
length_penalty=0.9,
|
76 |
+
no_repeat_ngram_size=2,
|
77 |
+
early_stopping=True,
|
78 |
+
pad_token_id=tokenizer.eos_token_id,
|
79 |
+
eos_token_id=tokenizer.eos_token_id,
|
80 |
+
)
|
81 |
+
|
82 |
+
caption = tokenizer.decode(output_ids.squeeze(), skip_special_tokens=True)
|
83 |
+
return caption
|
84 |
+
|
85 |
+
|
86 |
+
iface = gr.Interface(fn=generate_caption_async,
|
87 |
+
inputs=[
|
88 |
+
gr.Image(type="pil"),
|
89 |
+
gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Beams"),
|
90 |
+
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.7, label="Temperature")
|
91 |
+
],
|
92 |
+
outputs="text",
|
93 |
+
title="ViT-GPT2 Image Captioning",
|
94 |
+
description="Upload an image to get a caption.")
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
iface.launch() # Removed debug=True for deployment
|