LLaVA-Med / app.py
ayyuce's picture
Update app.py
3644e34 verified
import gradio as gr
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path
from llava.eval.run_llava import eval_model
from PIL import Image
import torch
# Load model configuration
model_path = "microsoft/llava-med-v1.5-mistral-7b"
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, _ = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=model_name,
device_map="cpu",
load_4bit=False
)
def analyze_medical_image(image, question):
# Convert Gradio input to PIL Image
if isinstance(image, str):
image = Image.open(image)
else:
image = Image.fromarray(image)
# Prepare prompt
prompt = f"<image>\nUSER: {question}\nASSISTANT:"
# Run inference
args = type('Args', (), {
"model_name": model_name,
"query": prompt,
"conv_mode": None,
"image_file": image,
"sep": ",",
"temperature": 0.2,
"top_p": None,
"num_beams": 1,
"max_new_tokens": 512
})()
return eval_model(args, tokenizer, model, image_processor)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# LLaVA-Med Medical Analysis")
with gr.Row():
gr.Image(type="pil", label="Input Image", source="upload", elem_id="image")
gr.Textbox(label="Question", placeholder="Ask about the medical image...")
gr.Textbox(label="Analysis Result", interactive=False)
examples = [
["examples/xray.jpg", "Are there any signs of pneumonia in this chest X-ray?"],
["examples/mri.jpg", "What abnormalities are visible in this brain MRI?"]
]
gr.Examples(examples=examples, inputs=[image, question])
demo.launch()