Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,39 +2,49 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
-
model_name = "ayyuce/SmolGRPO-135M"
|
6 |
-
|
7 |
|
|
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
-
model.to("cpu")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
inputs = {key: value.to("cpu") for key, value in inputs.items()}
|
15 |
-
|
16 |
-
prompt_length = inputs["input_ids"].shape[1]
|
17 |
-
|
18 |
-
outputs = model.generate(
|
19 |
-
**inputs,
|
20 |
-
max_length=prompt_length + 50,
|
21 |
-
min_length=prompt_length + 1,
|
22 |
-
do_sample=True,
|
23 |
-
top_p=0.95,
|
24 |
-
top_k=50
|
25 |
-
)
|
26 |
-
|
27 |
-
generated_text = tokenizer.decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
28 |
-
return generated_text
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
demo.launch()
|
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
|
|
|
|
5 |
|
6 |
+
# Load the tokenizer and model
|
7 |
+
model_name = "ayyuce/SmolGRPO-135M"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
10 |
|
11 |
+
# Initialize the text-generation pipeline
|
12 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1) # device=-1 ensures CPU usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def generate_text(prompt, max_new_tokens, temperature, top_p, do_sample):
|
15 |
+
# Define generation parameters
|
16 |
+
generate_kwargs = {
|
17 |
+
"max_new_tokens": int(max_new_tokens),
|
18 |
+
"temperature": float(temperature),
|
19 |
+
"top_p": float(top_p),
|
20 |
+
"do_sample": do_sample == "Yes",
|
21 |
+
}
|
22 |
+
# Generate text
|
23 |
+
generated_list = generator(prompt, **generate_kwargs)
|
24 |
+
# Extract the generated text from the first item in the list
|
25 |
+
generated_text = generated_list[0]["generated_text"]
|
26 |
+
return generated_text
|
27 |
|
28 |
+
# Create the Gradio interface
|
29 |
+
with gr.Blocks() as demo:
|
30 |
+
gr.Markdown("# SmolGRPO-135M Text Generator")
|
31 |
+
with gr.Row():
|
32 |
+
with gr.Column():
|
33 |
+
prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Enter your prompt here...")
|
34 |
+
max_new_tokens = gr.Number(label="Max New Tokens", value=256)
|
35 |
+
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5)
|
36 |
+
top_p = gr.Slider(label="Top-p (Nucleus Sampling)", minimum=0.0, maximum=1.0, value=0.9)
|
37 |
+
do_sample = gr.Dropdown(label="Do Sample", choices=["Yes", "No"], value="Yes")
|
38 |
+
generate_button = gr.Button("Generate Text")
|
39 |
+
with gr.Column():
|
40 |
+
output = gr.Textbox(label="Generated Text", lines=15)
|
41 |
+
|
42 |
+
generate_button.click(
|
43 |
+
fn=generate_text,
|
44 |
+
inputs=[prompt, max_new_tokens, temperature, top_p, do_sample],
|
45 |
+
outputs=output
|
46 |
+
)
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
demo.launch()
|
50 |
+
|