Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
# --------------- MODULE 1: Utility Function to Calculate Angle --------------- | |
def calculate_angle(a, b, c): | |
a = np.array(a) | |
b = np.array(b) | |
c = np.array(c) | |
ba = a - b | |
bc = c - b | |
cos_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc)) | |
angle = np.degrees(np.arccos(np.clip(cos_angle, -1.0, 1.0))) | |
return angle | |
# --------------- MODULE 2: Squat Counting Function (Refactored for Live Updates) --------------- | |
def count_squats_live(video): | |
mp_pose = mp.solutions.pose | |
pose = mp_pose.Pose(min_detection_confidence=0.5, model_complexity=1) | |
mp_drawing = mp.solutions.drawing_utils | |
cap = cv2.VideoCapture(video) | |
squat_count = 0 | |
is_squat_down = False | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
results = pose.process(frame_rgb) | |
if results.pose_landmarks: | |
landmarks = results.pose_landmarks.landmark | |
hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x, | |
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y] | |
knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x, | |
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y] | |
ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x, | |
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y] | |
squat_angle = calculate_angle(hip, knee, ankle) | |
if squat_angle < 80 and not is_squat_down: | |
is_squat_down = True | |
elif squat_angle > 150 and is_squat_down: | |
squat_count += 1 | |
is_squat_down = False | |
mp_drawing.draw_landmarks(frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) | |
# Draw the angle at the knee | |
cv2.putText(frame, f"Angle: {int(squat_angle)}", (10, 140), | |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) | |
cv2.line(frame, (int(hip[0] * frame.shape[1]), int(hip[1] * frame.shape[0])), | |
(int(knee[0] * frame.shape[1]), int(knee[1] * frame.shape[0])), (0, 0, 255), 2) | |
cv2.line(frame, (int(knee[0] * frame.shape[1]), int(knee[1] * frame.shape[0])), | |
(int(ankle[0] * frame.shape[1]), int(ankle[1] * frame.shape[0])), (0, 0, 255), 2) | |
# Display counts and legend | |
cv2.putText(frame, f"Squats: {squat_count}", (10, 100), | |
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2) | |
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
cap.release() | |
# --------------- MODULE 3: Pushup Counting Function (Refactored for Live Updates) --------------- | |
def count_pushups_live(video): | |
mp_pose = mp.solutions.pose | |
pose = mp_pose.Pose(min_detection_confidence=0.5, model_complexity=1) | |
mp_drawing = mp.solutions.drawing_utils | |
cap = cv2.VideoCapture(video) | |
pushup_count = 0 | |
is_pushup_down = False | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
results = pose.process(frame_rgb) | |
if results.pose_landmarks: | |
landmarks = results.pose_landmarks.landmark | |
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, | |
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y] | |
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x, | |
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y] | |
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x, | |
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y] | |
pushup_angle = calculate_angle(shoulder, elbow, wrist) | |
if pushup_angle < 90 and not is_pushup_down: | |
is_pushup_down = True | |
elif pushup_angle > 160 and is_pushup_down: | |
pushup_count += 1 | |
is_pushup_down = False | |
mp_drawing.draw_landmarks(frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) | |
# Draw the angle at the elbow | |
cv2.putText(frame, f"Angle: {int(pushup_angle)}", (10, 140), | |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) | |
cv2.line(frame, (int(shoulder[0] * frame.shape[1]), int(shoulder[1] * frame.shape[0])), | |
(int(elbow[0] * frame.shape[1]), int(elbow[1] * frame.shape[0])), (0, 0, 255), 2) | |
cv2.line(frame, (int(elbow[0] * frame.shape[1]), int(elbow[1] * frame.shape[0])), | |
(int(wrist[0] * frame.shape[1]), int(wrist[1] * frame.shape[0])), (0, 0, 255), 2) | |
# Display counts | |
cv2.putText(frame, f"Pushups: {pushup_count}", (10, 100), | |
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2) | |
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
cap.release() | |
# --------------- MODULE 4: Gradio Interface --------------- | |
def process_video_live(video, exercise): | |
if exercise == "squats": | |
generator = count_squats_live(video) | |
elif exercise == "pushups": | |
generator = count_pushups_live(video) | |
# Loop through the generator and yield each frame | |
for frame in generator: | |
yield frame | |
interface = gr.Interface( | |
fn=process_video_live, | |
inputs=[ | |
gr.Video(format="mp4", sources=["upload"], label="Upload Video", height=600), | |
gr.Radio(["squats", "pushups"], value="squats", label="Choose Exercise") | |
], | |
outputs=gr.Image(label="Live analysis", height=600), | |
flagging_mode="never", | |
title="AI-Powered Digital Coach", | |
description="<div style='text-align: center;'>Upload a video to count squats or pushups!</div>", | |
live=False | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |