import gradio as gr import cv2 import numpy as np import mediapipe as mp # --------------- MODULE 1: Utility Function to Calculate Angle --------------- def calculate_angle(a, b, c): a = np.array(a) b = np.array(b) c = np.array(c) ba = a - b bc = c - b cos_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc)) angle = np.degrees(np.arccos(np.clip(cos_angle, -1.0, 1.0))) return angle # --------------- MODULE 2: Squat Counting Function (Refactored for Live Updates) --------------- def count_squats_live(video): mp_pose = mp.solutions.pose pose = mp_pose.Pose(min_detection_confidence=0.5, model_complexity=1) mp_drawing = mp.solutions.drawing_utils cap = cv2.VideoCapture(video) squat_count = 0 is_squat_down = False while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = pose.process(frame_rgb) if results.pose_landmarks: landmarks = results.pose_landmarks.landmark hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x, landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y] knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x, landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y] ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x, landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y] squat_angle = calculate_angle(hip, knee, ankle) if squat_angle < 80 and not is_squat_down: is_squat_down = True elif squat_angle > 150 and is_squat_down: squat_count += 1 is_squat_down = False mp_drawing.draw_landmarks(frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) # Draw the angle at the knee cv2.putText(frame, f"Angle: {int(squat_angle)}", (10, 140), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.line(frame, (int(hip[0] * frame.shape[1]), int(hip[1] * frame.shape[0])), (int(knee[0] * frame.shape[1]), int(knee[1] * frame.shape[0])), (0, 0, 255), 2) cv2.line(frame, (int(knee[0] * frame.shape[1]), int(knee[1] * frame.shape[0])), (int(ankle[0] * frame.shape[1]), int(ankle[1] * frame.shape[0])), (0, 0, 255), 2) # Display counts and legend cv2.putText(frame, f"Squats: {squat_count}", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2) yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) cap.release() # --------------- MODULE 3: Pushup Counting Function (Refactored for Live Updates) --------------- def count_pushups_live(video): mp_pose = mp.solutions.pose pose = mp_pose.Pose(min_detection_confidence=0.5, model_complexity=1) mp_drawing = mp.solutions.drawing_utils cap = cv2.VideoCapture(video) pushup_count = 0 is_pushup_down = False while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = pose.process(frame_rgb) if results.pose_landmarks: landmarks = results.pose_landmarks.landmark shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y] elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x, landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y] wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x, landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y] pushup_angle = calculate_angle(shoulder, elbow, wrist) if pushup_angle < 90 and not is_pushup_down: is_pushup_down = True elif pushup_angle > 160 and is_pushup_down: pushup_count += 1 is_pushup_down = False mp_drawing.draw_landmarks(frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) # Draw the angle at the elbow cv2.putText(frame, f"Angle: {int(pushup_angle)}", (10, 140), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.line(frame, (int(shoulder[0] * frame.shape[1]), int(shoulder[1] * frame.shape[0])), (int(elbow[0] * frame.shape[1]), int(elbow[1] * frame.shape[0])), (0, 0, 255), 2) cv2.line(frame, (int(elbow[0] * frame.shape[1]), int(elbow[1] * frame.shape[0])), (int(wrist[0] * frame.shape[1]), int(wrist[1] * frame.shape[0])), (0, 0, 255), 2) # Display counts cv2.putText(frame, f"Pushups: {pushup_count}", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2) yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) cap.release() # --------------- MODULE 4: Gradio Interface --------------- def process_video_live(video, exercise): if exercise == "squats": generator = count_squats_live(video) elif exercise == "pushups": generator = count_pushups_live(video) # Loop through the generator and yield each frame for frame in generator: yield frame interface = gr.Interface( fn=process_video_live, inputs=[ gr.Video(format="mp4", sources=["upload"], label="Upload Video", height=600), gr.Radio(["squats", "pushups"], value="squats", label="Choose Exercise") ], outputs=gr.Image(label="Live analysis", height=600), flagging_mode="never", title="AI-Powered Digital Coach", description="