Spaces:
Runtime error
Runtime error
Init
Browse files- app.py +50 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from transformers import AutoModelForSequenceClassification
|
6 |
+
|
7 |
+
def process_tweet(tweet):
|
8 |
+
# remove links
|
9 |
+
tweet = re.sub('((www\.[\s]+)|(https?://[^\s]+))', '', tweet)
|
10 |
+
# remove usernames
|
11 |
+
tweet = re.sub('@[^\s]+', '', tweet)
|
12 |
+
# remove additional white spaces
|
13 |
+
tweet = re.sub('[\s]+', ' ', tweet)
|
14 |
+
# replace hashtags with words
|
15 |
+
tweet = re.sub(r'#([^\s]+)', r'\1', tweet)
|
16 |
+
# trim
|
17 |
+
tweet = tweet.strip('\'"')
|
18 |
+
return tweet #if len(tweet) > 0 else ""
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
21 |
+
"azamat/geocoder_model_xlm_roberta_50"
|
22 |
+
)
|
23 |
+
|
24 |
+
relevancy_pipeline = pipeline("sentiment-analysis", model="azamat/geocoder_model")
|
25 |
+
|
26 |
+
coordinates_model = AutoModelForSequenceClassification.from_pretrained(
|
27 |
+
"azamat/geocoder_model_xlm_roberta_50",
|
28 |
+
)
|
29 |
+
|
30 |
+
def predict_relevancy(text):
|
31 |
+
outputs = relevancy_pipeline(text)
|
32 |
+
return outputs[0]['label'], outputs[0]['score']
|
33 |
+
|
34 |
+
def predict_coordinates(text):
|
35 |
+
encoding = tokenizer(text, padding="max_length", truncation=True, \
|
36 |
+
max_length=128, return_tensors='pt')
|
37 |
+
outputs = coordinates_model(**encoding)
|
38 |
+
return outputs[0][0], outputs[0][1]
|
39 |
+
|
40 |
+
def predict(text):
|
41 |
+
text = process_tweet(text)
|
42 |
+
relevancy_label, relevancy_score = predict_relevancy(text)
|
43 |
+
if relevancy_label == 'relevant':
|
44 |
+
lat, lon = predict_coordinates(text)
|
45 |
+
return f"Relevancy model is confident for {relevancy_score * 100}% that tweet has the geolocation relevant information.\n" + \
|
46 |
+
f"Precited location coordinates are: lat: {lat} lon: {lon}"
|
47 |
+
return f"Relevancy model is confident for {relevancy_score * 100}% that tweet does not have the geolocation relevant information."
|
48 |
+
|
49 |
+
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
50 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
datasets
|