azamat commited on
Commit
7a321ee
·
1 Parent(s): 6534a76

Add some beauty

Browse files
Files changed (2) hide show
  1. app.py +26 -11
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import re
2
  import requests
3
  import gradio as gr
 
4
  from transformers import pipeline
5
  from transformers import AutoTokenizer
6
  from transformers import AutoModelForSequenceClassification
@@ -19,13 +20,13 @@ def process_tweet(tweet):
19
  return tweet #if len(tweet) > 0 else ""
20
 
21
  tokenizer = AutoTokenizer.from_pretrained(
22
- "azamat/geocoder_model_xlm_roberta_50"
23
  )
24
 
25
- relevancy_pipeline = pipeline("sentiment-analysis", model="azamat/geocoder_model")
26
 
27
  coordinates_model = AutoModelForSequenceClassification.from_pretrained(
28
- "azamat/geocoder_model_xlm_roberta_50",
29
  )
30
 
31
  def predict_relevancy(text):
@@ -48,22 +49,36 @@ def reverse_geocode(lat, lon):
48
  }
49
  try:
50
  r = requests.get('https://geocode.maps.co/reverse', params=payload)
51
- return f"Reverse geocoded coordinats: {r.json()['display_name']}"
52
  except:
53
  return "Service couldn't reverse geocode provided coordinates."
54
 
55
  def predict(text):
56
  text = process_tweet(text)
 
 
 
 
 
 
57
  relevancy_label, relevancy_score = predict_relevancy(text)
58
  if relevancy_label == 'relevant':
 
 
59
  lat, lon = predict_coordinates(text)
 
 
 
60
  reverse_geocoded = reverse_geocode(lat, lon)
61
- return f"Confident for {round(relevancy_score * 100, 2)}% that tweet has the geolocation relevant information.\n" + \
62
- f"Predicted coordinates are: lat: {lat} lon: {lon}.\n" + \
63
- f"{reverse_geocoded}"
64
- return f"Confident for {relevancy_score * 100}% that tweet does not have the geolocation relevant information."
 
65
 
66
- gr.Markdown("# **<p align='center'>Twitter geocoding with 🤗 Transformers</p>**")
 
 
67
 
68
- iface = gr.Interface(fn=predict, placeholder="Enter the tweet", inputs="text", outputs="text")
69
- iface.launch()
 
1
  import re
2
  import requests
3
  import gradio as gr
4
+ import pandas as pd
5
  from transformers import pipeline
6
  from transformers import AutoTokenizer
7
  from transformers import AutoModelForSequenceClassification
 
20
  return tweet #if len(tweet) > 0 else ""
21
 
22
  tokenizer = AutoTokenizer.from_pretrained(
23
+ "azamat/geocoder_coordinates_model"
24
  )
25
 
26
+ relevancy_pipeline = pipeline("sentiment-analysis", model="azamat/geocoder_relevancy_model")
27
 
28
  coordinates_model = AutoModelForSequenceClassification.from_pretrained(
29
+ "azamat/geocoder_coordinates_model",
30
  )
31
 
32
  def predict_relevancy(text):
 
49
  }
50
  try:
51
  r = requests.get('https://geocode.maps.co/reverse', params=payload)
52
+ return f"Reverse geocoded coordinates: {r.json()['display_name']}"
53
  except:
54
  return "Service couldn't reverse geocode provided coordinates."
55
 
56
  def predict(text):
57
  text = process_tweet(text)
58
+ data = {
59
+ "relevancy_score" : 0,
60
+ "lat" : 0,
61
+ "lon" : 0,
62
+ "reversed lat/lon" : ""
63
+ }
64
  relevancy_label, relevancy_score = predict_relevancy(text)
65
  if relevancy_label == 'relevant':
66
+ data['relevancy_score'] = relevancy_score
67
+
68
  lat, lon = predict_coordinates(text)
69
+ data['lat'] = lat
70
+ data['lon'] = lon
71
+
72
  reverse_geocoded = reverse_geocode(lat, lon)
73
+ data['reversed lat/lon'] = reverse_geocoded
74
+
75
+ return pd.DataFrame([data])
76
+
77
+ with gr.Blocks() as demo:
78
 
79
+ gr.Markdown("# **<p align='center'>Twitter geocoding with 🤗 Transformers</p>**")
80
+ inp = inp = gr.Textbox(placeholder="Enter the tweet",)
81
+ inp.submit(predict, inp, "dataframe")
82
 
83
+ if __name__ == "__main__":
84
+ demo.launch()
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  torch
2
  transformers
3
- datasets
 
 
1
  torch
2
  transformers
3
+ datasets
4
+ pandas