Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,162 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import whisper
|
3 |
+
from transformers import pipeline
|
4 |
+
import pandas as pd, numpy as np
|
5 |
import os
|
6 |
+
import torchaudio
|
7 |
+
import librosa
|
8 |
+
from scipy.io.wavfile import write
|
9 |
+
import shutil
|
10 |
+
import soundfile as sf
|
11 |
+
import noisereduce as nr
|
12 |
+
from scipy.stats import skew
|
13 |
+
from tqdm import tqdm
|
14 |
+
import requests
|
15 |
+
import pickle
|
16 |
+
import dash
|
17 |
+
import dash_bootstrap_components as dbc
|
18 |
+
from dash import html
|
19 |
|
20 |
+
sr = 8000
|
21 |
|
22 |
+
url = "https://huggingface.co/spaces/aslanovaf/Sentiment_Analysis_Azerbaijani/resolve/main/sentiment_model_8000.pickle"
|
23 |
+
hf_token = os.environ.get("HF_TOKEN")
|
24 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
25 |
+
|
26 |
+
response = requests.get(url, headers=headers)
|
27 |
+
if response.status_code == 200:
|
28 |
+
model = pickle.loads(response.content)
|
29 |
+
else:
|
30 |
+
st.markdown(f"Failed to download TTS from {url} (Status code: {response.status_code})")
|
31 |
+
|
32 |
+
|
33 |
+
def split_full_audio_15_sec(audio_file):
|
34 |
+
audio, orig_sr = sf.read(audio_file)
|
35 |
+
audio = librosa.resample(y=audio, orig_sr=orig_sr, target_sr=sr)
|
36 |
+
|
37 |
+
chunk_length = 15 * sr
|
38 |
+
total_length = len(audio)
|
39 |
+
start_index = 0
|
40 |
+
end_index = min(chunk_length, total_length)
|
41 |
+
f = 0
|
42 |
+
chunks = []
|
43 |
+
|
44 |
+
while start_index < total_length:
|
45 |
+
chunk = audio[start_index:end_index]
|
46 |
+
chunk_name = f"example_{f}.wav"
|
47 |
+
chunk_duration = len(chunk)/sr
|
48 |
+
if chunk_duration<3:
|
49 |
+
break
|
50 |
+
chunks.append(chunk)
|
51 |
+
start_index = end_index
|
52 |
+
end_index = min(end_index + chunk_length, total_length)
|
53 |
+
f+=1
|
54 |
+
return chunks
|
55 |
+
|
56 |
+
def get_mfcc(name):
|
57 |
+
resampled_audio = name
|
58 |
+
|
59 |
+
try:
|
60 |
+
reduced_noise = nr.reduce_noise(resampled_audio, sr=sr)
|
61 |
+
ft1 = librosa.feature.mfcc(y=reduced_noise, sr = sr, n_mfcc=16)
|
62 |
+
ft2 = librosa.feature.zero_crossing_rate(reduced_noise)[0]
|
63 |
+
ft3 = librosa.feature.spectral_rolloff(y=reduced_noise)[0]
|
64 |
+
ft4 = librosa.feature.spectral_centroid(y=reduced_noise)[0]
|
65 |
+
ft1_trunc = np.hstack((np.mean(ft1, axis=1), np.std(ft1, axis=1), skew(ft1, axis = 1), np.max(ft1, axis = 1), np.min(ft1, axis = 1)))
|
66 |
+
ft2_trunc = np.hstack((np.mean(ft2), np.std(ft2), skew(ft2), np.max(ft2), np.min(ft2)))
|
67 |
+
ft3_trunc = np.hstack((np.mean(ft3), np.std(ft3), skew(ft3), np.max(ft3), np.min(ft3)))
|
68 |
+
ft4_trunc = np.hstack((np.mean(ft4), np.std(ft4), skew(ft4), np.max(ft4), np.min(ft4)))
|
69 |
+
return pd.Series(np.hstack((ft1_trunc, ft2_trunc, ft3_trunc, ft4_trunc)))
|
70 |
+
except:
|
71 |
+
print('bad file')
|
72 |
+
return pd.Series([0]*95)
|
73 |
+
|
74 |
+
|
75 |
+
def analyze_sentiment(audio):
|
76 |
+
chunks = split_full_audio_15_sec(audio)
|
77 |
+
chunked_df = pd.DataFrame(data={'Chunk_order': [f'Chunk_{i+1}' for i in range(len(chunks))], 'Data': chunks})
|
78 |
+
df_features = chunked_df['Data'].apply(get_mfcc)
|
79 |
+
df = pd.concat([chunked_df, df_features], axis=1)
|
80 |
+
df = df.drop(columns=['Data'])
|
81 |
+
df.columns = ['Chunk_order']+[f'Feature_{i+1}' for i in range(95)]
|
82 |
+
df['Prediction'] = model.predict(df.drop(columns=['Chunk_order']))
|
83 |
+
|
84 |
+
df['Prediction'] = df['Prediction'].map({
|
85 |
+
'pozitive_normal':'Normal',
|
86 |
+
'scope':'Silence',
|
87 |
+
'neqativ':'Negative'
|
88 |
+
})
|
89 |
+
|
90 |
+
clean_df = df[['Chunk_order', 'Prediction']]
|
91 |
+
predictions = df['Prediction'].tolist()
|
92 |
+
final_prediction = 'Negative' if 'Negative' in predictions else 'Normal' if 'Normal' in predictions else 'Silence'
|
93 |
+
final_prediction_2x = 'Negative' if predictions.count('Negative')>1 else 'Normal' if 'Normal' in predictions else 'Silence'
|
94 |
+
|
95 |
+
color_map = {
|
96 |
+
'Normal':'success',
|
97 |
+
'Silence': 'warning',
|
98 |
+
'Negative': 'danger'
|
99 |
+
}
|
100 |
+
|
101 |
+
return (', '.join(predictions), final_prediction)
|
102 |
+
|
103 |
+
|
104 |
+
title = """<h1 align="center">π€ Azerbaijani Audio Speech Sentiment Analysis π¬</h1>"""
|
105 |
+
image_path = "thmbnail.jpg"
|
106 |
+
description = """
|
107 |
+
π» This demo showcases a general-purpose sentiment analysis process. It is trained on a collection of audio calls from banking/fintech industries based on audio features. The main analysis predicts one of the categories (Normal/Negative/Silence) for each 15-second bucket in the audio. The final category for the whole audio is also estimated.
|
108 |
+
<br>
|
109 |
+
βοΈ Components of the tool:<br>
|
110 |
+
<br>
|
111 |
+
- Sentiment analysis directly of the audios.<br>
|
112 |
+
<br>
|
113 |
+
β Use the microphone for real-time audio recording.<br>
|
114 |
+
β Or upload an audio file.<br>
|
115 |
+
<br>
|
116 |
+
|
117 |
+
β‘οΈ The model will extract audio features and perform sentiment analysis on the audio.<br>
|
118 |
+
|
119 |
+
"""
|
120 |
+
|
121 |
+
custom_css = """
|
122 |
+
#banner-image {
|
123 |
+
display: block;
|
124 |
+
margin-left: auto;
|
125 |
+
margin-right: auto;
|
126 |
+
}
|
127 |
+
#chat-message {
|
128 |
+
font-size: 14px;
|
129 |
+
min-height: 300px;
|
130 |
+
}
|
131 |
+
"""
|
132 |
+
|
133 |
+
block = gr.Blocks(css=custom_css)
|
134 |
+
|
135 |
+
|
136 |
+
with block:
|
137 |
+
gr.HTML(title)
|
138 |
+
|
139 |
+
with gr.Row():
|
140 |
+
with gr.Column():
|
141 |
+
gr.HTML(description)
|
142 |
+
with gr.Column():
|
143 |
+
gr.Image(image_path, elem_id="banner-image", show_label=False)
|
144 |
+
|
145 |
+
gr.Interface(
|
146 |
+
fn=analyze_sentiment,
|
147 |
+
inputs=[
|
148 |
+
gr.Audio(sources=["upload", "microphone"], type="filepath", label="Input Audio"),
|
149 |
+
],
|
150 |
+
outputs=[gr.Textbox(label="Sentiment Analysis Results of 15-second buckets"),gr.Textbox(label="Final Prediction")],
|
151 |
+
# layout="vertical",
|
152 |
+
# theme="huggingface",
|
153 |
+
examples=[
|
154 |
+
["./Recording_1.wav", "analyze_sentiment"],
|
155 |
+
["./Recording_2.wav", "analyze_sentiment"],
|
156 |
+
],
|
157 |
+
cache_examples=True,
|
158 |
+
allow_flagging="never",
|
159 |
+
)
|
160 |
+
# gr.TabbedInterface([mic, file], ["Audio from Microphone", "Audio from File"])
|
161 |
+
|
162 |
+
block.launch()
|