Spaces:
azhan77168
/
Running on Zero

File size: 20,712 Bytes
3eca7bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
BlobNetModel(
  (conv_in): Conv2d(1029, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (time_proj): Timesteps()
  (time_embedding): TimestepEmbedding(
    (linear_1): Linear(in_features=320, out_features=1280, bias=True)
    (act): SiLU()
    (linear_2): Linear(in_features=1280, out_features=1280, bias=True)
  )
  (down_blocks): ModuleList(
    (0): CrossAttnDownBlock2D(
      (attentions): ModuleList(
        (0-1): 2 x Transformer2DModel(
          (norm): GroupNorm(32, 320, eps=1e-06, affine=True)
          (proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
          (transformer_blocks): ModuleList(
            (0): BasicTransformerBlock(
              (norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
              (attn1): Attention(
                (to_q): Linear(in_features=320, out_features=320, bias=False)
                (to_k): Linear(in_features=320, out_features=320, bias=False)
                (to_v): Linear(in_features=320, out_features=320, bias=False)
                (to_out): ModuleList(
                  (0): Linear(in_features=320, out_features=320, bias=True)
                  (1): Dropout(p=0.0, inplace=False)
                )
              )
              (norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
              (ff): FeedForward(
                (net): ModuleList(
                  (0): GEGLU(
                    (proj): Linear(in_features=320, out_features=2560, bias=True)
                  )
                  (1): Dropout(p=0.0, inplace=False)
                  (2): Linear(in_features=1280, out_features=320, bias=True)
                )
              )
            )
          )
          (proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (resnets): ModuleList(
        (0-1): 2 x ResnetBlock2D(
          (norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
          (conv1): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
          (norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
        )
      )
      (downsamplers): ModuleList(
        (0): Downsample2D(
          (conv): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        )
      )
    )
    (1): CrossAttnDownBlock2D(
      (attentions): ModuleList(
        (0-1): 2 x Transformer2DModel(
          (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
          (proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
          (transformer_blocks): ModuleList(
            (0): BasicTransformerBlock(
              (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
              (attn1): Attention(
                (to_q): Linear(in_features=640, out_features=640, bias=False)
                (to_k): Linear(in_features=640, out_features=640, bias=False)
                (to_v): Linear(in_features=640, out_features=640, bias=False)
                (to_out): ModuleList(
                  (0): Linear(in_features=640, out_features=640, bias=True)
                  (1): Dropout(p=0.0, inplace=False)
                )
              )
              (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
              (ff): FeedForward(
                (net): ModuleList(
                  (0): GEGLU(
                    (proj): Linear(in_features=640, out_features=5120, bias=True)
                  )
                  (1): Dropout(p=0.0, inplace=False)
                  (2): Linear(in_features=2560, out_features=640, bias=True)
                )
              )
            )
          )
          (proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (resnets): ModuleList(
        (0): ResnetBlock2D(
          (norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
          (conv1): Conv2d(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
          (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(320, 640, kernel_size=(1, 1), stride=(1, 1))
        )
        (1): ResnetBlock2D(
          (norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
          (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
          (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
        )
      )
      (downsamplers): ModuleList(
        (0): Downsample2D(
          (conv): Conv2d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        )
      )
    )
    (2): CrossAttnDownBlock2D(
      (attentions): ModuleList(
        (0-1): 2 x Transformer2DModel(
          (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
          (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
          (transformer_blocks): ModuleList(
            (0): BasicTransformerBlock(
              (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
              (attn1): Attention(
                (to_q): Linear(in_features=1280, out_features=1280, bias=False)
                (to_k): Linear(in_features=1280, out_features=1280, bias=False)
                (to_v): Linear(in_features=1280, out_features=1280, bias=False)
                (to_out): ModuleList(
                  (0): Linear(in_features=1280, out_features=1280, bias=True)
                  (1): Dropout(p=0.0, inplace=False)
                )
              )
              (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
              (ff): FeedForward(
                (net): ModuleList(
                  (0): GEGLU(
                    (proj): Linear(in_features=1280, out_features=10240, bias=True)
                  )
                  (1): Dropout(p=0.0, inplace=False)
                  (2): Linear(in_features=5120, out_features=1280, bias=True)
                )
              )
            )
          )
          (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (resnets): ModuleList(
        (0): ResnetBlock2D(
          (norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
          (conv1): Conv2d(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
          (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(640, 1280, kernel_size=(1, 1), stride=(1, 1))
        )
        (1): ResnetBlock2D(
          (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
          (conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
          (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
        )
      )
      (downsamplers): ModuleList(
        (0): Downsample2D(
          (conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        )
      )
    )
    (3): DownBlock2D(
      (resnets): ModuleList(
        (0-1): 2 x ResnetBlock2D(
          (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
          (conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
          (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
        )
      )
    )
  )
  (blobnet_down_blocks): ModuleList(
    (0-3): 4 x Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
    (4-6): 3 x Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
    (7-11): 5 x Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
  )
  (blobnet_mid_block): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
  (mid_block): UNetMidBlock2DCrossAttn(
    (attentions): ModuleList(
      (0): Transformer2DModel(
        (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
        (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
        (transformer_blocks): ModuleList(
          (0): BasicTransformerBlock(
            (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
            (attn1): Attention(
              (to_q): Linear(in_features=1280, out_features=1280, bias=False)
              (to_k): Linear(in_features=1280, out_features=1280, bias=False)
              (to_v): Linear(in_features=1280, out_features=1280, bias=False)
              (to_out): ModuleList(
                (0): Linear(in_features=1280, out_features=1280, bias=True)
                (1): Dropout(p=0.0, inplace=False)
              )
            )
            (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
            (ff): FeedForward(
              (net): ModuleList(
                (0): GEGLU(
                  (proj): Linear(in_features=1280, out_features=10240, bias=True)
                )
                (1): Dropout(p=0.0, inplace=False)
                (2): Linear(in_features=5120, out_features=1280, bias=True)
              )
            )
          )
        )
        (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
      )
    )
    (resnets): ModuleList(
      (0-1): 2 x ResnetBlock2D(
        (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
        (conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
        (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
        (dropout): Dropout(p=0.0, inplace=False)
        (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (nonlinearity): SiLU()
      )
    )
  )
  (up_blocks): ModuleList(
    (0): UpBlock2D(
      (resnets): ModuleList(
        (0-2): 3 x ResnetBlock2D(
          (norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
          (conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
          (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (upsamplers): ModuleList(
        (0): Upsample2D(
          (conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        )
      )
    )
    (1): CrossAttnUpBlock2D(
      (attentions): ModuleList(
        (0-2): 3 x Transformer2DModel(
          (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
          (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
          (transformer_blocks): ModuleList(
            (0): BasicTransformerBlock(
              (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
              (attn1): Attention(
                (to_q): Linear(in_features=1280, out_features=1280, bias=False)
                (to_k): Linear(in_features=1280, out_features=1280, bias=False)
                (to_v): Linear(in_features=1280, out_features=1280, bias=False)
                (to_out): ModuleList(
                  (0): Linear(in_features=1280, out_features=1280, bias=True)
                  (1): Dropout(p=0.0, inplace=False)
                )
              )
              (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
              (ff): FeedForward(
                (net): ModuleList(
                  (0): GEGLU(
                    (proj): Linear(in_features=1280, out_features=10240, bias=True)
                  )
                  (1): Dropout(p=0.0, inplace=False)
                  (2): Linear(in_features=5120, out_features=1280, bias=True)
                )
              )
            )
          )
          (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (resnets): ModuleList(
        (0-1): 2 x ResnetBlock2D(
          (norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
          (conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
          (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
        )
        (2): ResnetBlock2D(
          (norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
          (conv1): Conv2d(1920, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
          (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(1920, 1280, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (upsamplers): ModuleList(
        (0): Upsample2D(
          (conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        )
      )
    )
    (2): CrossAttnUpBlock2D(
      (attentions): ModuleList(
        (0-2): 3 x Transformer2DModel(
          (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
          (proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
          (transformer_blocks): ModuleList(
            (0): BasicTransformerBlock(
              (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
              (attn1): Attention(
                (to_q): Linear(in_features=640, out_features=640, bias=False)
                (to_k): Linear(in_features=640, out_features=640, bias=False)
                (to_v): Linear(in_features=640, out_features=640, bias=False)
                (to_out): ModuleList(
                  (0): Linear(in_features=640, out_features=640, bias=True)
                  (1): Dropout(p=0.0, inplace=False)
                )
              )
              (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
              (ff): FeedForward(
                (net): ModuleList(
                  (0): GEGLU(
                    (proj): Linear(in_features=640, out_features=5120, bias=True)
                  )
                  (1): Dropout(p=0.0, inplace=False)
                  (2): Linear(in_features=2560, out_features=640, bias=True)
                )
              )
            )
          )
          (proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (resnets): ModuleList(
        (0): ResnetBlock2D(
          (norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
          (conv1): Conv2d(1920, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
          (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(1920, 640, kernel_size=(1, 1), stride=(1, 1))
        )
        (1): ResnetBlock2D(
          (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
          (conv1): Conv2d(1280, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
          (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(1280, 640, kernel_size=(1, 1), stride=(1, 1))
        )
        (2): ResnetBlock2D(
          (norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
          (conv1): Conv2d(960, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
          (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(960, 640, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (upsamplers): ModuleList(
        (0): Upsample2D(
          (conv): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        )
      )
    )
    (3): CrossAttnUpBlock2D(
      (attentions): ModuleList(
        (0-2): 3 x Transformer2DModel(
          (norm): GroupNorm(32, 320, eps=1e-06, affine=True)
          (proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
          (transformer_blocks): ModuleList(
            (0): BasicTransformerBlock(
              (norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
              (attn1): Attention(
                (to_q): Linear(in_features=320, out_features=320, bias=False)
                (to_k): Linear(in_features=320, out_features=320, bias=False)
                (to_v): Linear(in_features=320, out_features=320, bias=False)
                (to_out): ModuleList(
                  (0): Linear(in_features=320, out_features=320, bias=True)
                  (1): Dropout(p=0.0, inplace=False)
                )
              )
              (norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
              (ff): FeedForward(
                (net): ModuleList(
                  (0): GEGLU(
                    (proj): Linear(in_features=320, out_features=2560, bias=True)
                  )
                  (1): Dropout(p=0.0, inplace=False)
                  (2): Linear(in_features=1280, out_features=320, bias=True)
                )
              )
            )
          )
          (proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (resnets): ModuleList(
        (0): ResnetBlock2D(
          (norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
          (conv1): Conv2d(960, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
          (norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1))
        )
        (1-2): 2 x ResnetBlock2D(
          (norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
          (conv1): Conv2d(640, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
          (norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
          (dropout): Dropout(p=0.0, inplace=False)
          (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (nonlinearity): SiLU()
          (conv_shortcut): Conv2d(640, 320, kernel_size=(1, 1), stride=(1, 1))
        )
      )
    )
  )
  (blobnet_up_blocks): ModuleList(
    (0-7): 8 x Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
    (8-11): 4 x Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
    (12-14): 3 x Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
  )
)