Spaces:
azhan77168
/
Running on Zero

File size: 19,276 Bytes
3eca7bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
794b567
3eca7bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
794b567
3eca7bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import importlib
from typing import Any, Union, TypeVar, Tuple, Optional, Dict, OrderedDict
from copy import deepcopy
from PIL import Image

import einops
import cv2

from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from matplotlib import cm

import numpy as np
import torch
from torch import Tensor
from torch.nn import functional as F
from PIL import ImageDraw, Image, ImageFont
import torchvision.transforms.functional as F

einsum = torch.einsum

BLOB_VIS_COLORS = torch.tensor(
    [
        [0.9804, 0.9451, 0.9176],                                                                                            
        [1.0, 0.494, 0.357],
        [0.961, 0.882, 0.827],
        [0.8980, 0.5255, 0.0235],                                                                                            
        [0.3647, 0.4118, 0.6941],                                                                                            
        [0.3216, 0.7373, 0.6392],                                                                                            
        [0.6000, 0.7882, 0.2706],                                                                                            
        [0.1843, 0.5412, 0.7686],                                                                                            
        [0.6471, 0.6667, 0.6000],                                                                                            
        [0.8549, 0.6471, 0.1059],                                                                                            
        [0.4627, 0.3059, 0.6235],                                                                                            
        [0.8000, 0.3804, 0.6902],                                                                                            
        [0.9294, 0.3922, 0.3529],                                                                                            
        [0.1412, 0.4745, 0.4235],                                                                                            
        [0.4000, 0.7725, 0.8000],                                                                                            
        [0.9647, 0.8118, 0.4431],                                                                                            
        [0.9725, 0.6118, 0.4549],                                                                                            
        [0.8627, 0.6902, 0.9490],                                                                                            
        [0.5294, 0.7725, 0.3725],                                                                                            
        [0.6196, 0.7255, 0.9529],                                                                                            
        [0.9961, 0.5333, 0.6941],                                                                                            
        [0.7882, 0.8588, 0.4549],                                                                                            
        [0.5451, 0.8784, 0.6431],                                                                                            
        [0.7059, 0.5922, 0.9059],                                                                                            
        [0.7020, 0.7020, 0.7020],                                                                                            
        [0.5216, 0.3608, 0.4588],                                                                                            
        [0.8510, 0.6863, 0.4196],                                                                                            
        [0.6863, 0.3922, 0.3451],                                                                                            
        [0.4510, 0.4353, 0.298]
    ])



def splat_features_from_scores(scores: Tensor, features: Tensor, size: Optional[int],
                               channels_last: bool = True) -> Tensor:
    """

    Args:
        channels_last: ∂
        scores: [N, H, W, M] (or [N, M, H, W] if not channels last)
        features: [N, M, C]
        size: dimension of map to return
    Returns: [N, C, H, W]

    """
    features = features.to(dtype=scores.dtype, device=scores.device)
    if size and not (scores.shape[2] == size):
        if channels_last:
            scores = einops.rearrange(scores, 'n h w m -> n m h w')
        scores = torch.nn.functional.interpolate(scores, size, mode='bilinear', align_corners=False)
        einstr = 'nmhw,nmc->nchw'
    else:
        einstr = 'nhwm,nmc->nchw' if channels_last else 'nmhw,nmc->nchw'
    return einsum(einstr, scores, features).contiguous()


def splat_features(
            xs: Tensor, 
            ys: Tensor, 
            covs: Tensor, 
            sizes: Tensor, 
            score_size: Optional[int] = None, 
            interp_size: int = None,
            features: Tensor = None, 
            viz_size: Optional[int] = None, 
            is_viz: bool = False,
            ret_layout: bool = True,
            viz_score_fn=None,
            return_d_score=False,
            only_vis: bool = False,
            only_splatting_fg: bool = False,
            only_splatting_bg: bool = False,
            **kwargs) -> Dict:
        """
        Args:
            xs: [N, M] X-coord location in [0,1]
            ys: [N, M] Y-coord location in [0,1]
            features: [N, M+1, dim] feature vectors to splat (and bg feature vector)
            covs: [N, M, 2, 2] xy covariance matrices for each feature
            sizes: [N, M+1] distributions of per feature (and bg) weights
            interp_size: output grid size
            score_size: size at which to render score grid before downsampling to size
            viz_size: visualized grid in RGB dimension
            viz: whether to visualize
            ret_layout: whether to return dict with layout info
            viz_score_fn: map from raw score to new raw score for generating blob maps. if you want to artificially enlarge blob borders, e.g., you can send in lambda s: s*1.5
            return_d_score: only return d_score
            only_vis: only return visualize result
            only_splatting_fg: only splatting fg
            only_splatting_bg: only splatting bg
            **kwargs: unused

        Returns: dict with requested information
        """


        if not isinstance(viz_size, int) and viz_size is not None:
            height, width = viz_size
            feature_coords = torch.stack((xs.mul(width), ys.mul(height)), -1)  # [n, m, 2]
            grid_x = torch.arange(width).repeat(height)  
            grid_y = torch.arange(height).repeat_interleave(width)
            grid_coords = torch.stack((grid_x, grid_y), dim=0).to(xs.device)
            delta = (grid_coords[None, None] - feature_coords[..., None])  # [n, m, 2, size*size]
            delta[:,:,0,:] /= width
            delta[:,:,1,:] /= height
            
            # # Now compute the Mahalanobis distance
            sq_mahalanobis = (delta * torch.linalg.solve(covs, delta)).sum(2)
            batch = 1
            n_gaussians = 1
            sq_mahalanobis = sq_mahalanobis.view(batch, n_gaussians, height, width).contiguous()
            sq_mahalanobis = sq_mahalanobis.permute(0,2,3,1).contiguous()
        else:
            if isinstance(score_size, int):
                feature_coords = torch.stack((xs, ys), -1).mul(score_size)  # [n, m, 2]
                grid_coords = torch.stack(
                    (torch.arange(score_size).repeat(score_size), torch.arange(score_size).repeat_interleave(score_size))).to(
                    xs.device)  # [2, size*size]
                delta = (grid_coords[None, None] - feature_coords[..., None]).div(score_size)  # [n, m, 2, size*size]
                sq_mahalanobis = (delta * torch.linalg.solve(covs, delta)).sum(2)
                sq_mahalanobis = rearrange(sq_mahalanobis, 'n m (s1 s2) -> n s1 s2 m', s1=score_size)
            else:
                height, width = score_size
                feature_coords = torch.stack((xs.mul(width), ys.mul(height)), -1)  # [n, m, 2]
                grid_x = torch.arange(width).repeat(height)  
                grid_y = torch.arange(height).repeat_interleave(width)
                grid_coords = torch.stack((grid_x, grid_y), dim=0).to(xs.device)
                delta = (grid_coords[None, None] - feature_coords[..., None])  # [n, m, 2, size*size]
                delta[:,:,0,:] /= width
                delta[:,:,1,:] /= height
                
                # # Now compute the Mahalanobis distance
                sq_mahalanobis = (delta * torch.linalg.solve(covs, delta)).sum(2)
                batch = 1
                n_gaussians = 1
                sq_mahalanobis = sq_mahalanobis.view(batch, n_gaussians, height, width).contiguous()
                sq_mahalanobis = sq_mahalanobis.permute(0,2,3,1).contiguous()

        scores = sq_mahalanobis.div(-1).sigmoid()
        scores = scores.mul(2).clamp_(max=1)
        
        if sizes.ndim == 3:
            sizes = sizes.squeeze(-1)
        is_not_exits = sizes < 0.5
        is_not_exits = is_not_exits[:, None, None, :]
        is_not_exits_expanded = is_not_exits.expand(-1, scores.shape[1], scores.shape[2], -1)
        
        # scores[is_exits_expanded] = 1e-5
        scores = torch.where(is_not_exits_expanded, torch.tensor(1e-6, device=scores.device), scores)

    
        bg_scores = torch.ones_like(scores[..., :1])
        scores = torch.cat((bg_scores, scores), -1)  
        
        # alpha composite
        rev = list(range(scores.size(-1) - 1, -1, -1))  # flip, but without copy
        d_scores = (1 - scores[..., rev]).cumprod(-1)[..., rev].roll(-1, -1) * scores
        d_scores[..., -1] = scores[..., -1]

        if only_splatting_bg:
            d_scores = d_scores[..., 0]
        elif only_splatting_fg:
            d_scores = d_scores[..., 1:]
        else:
            d_scores = d_scores

        if d_scores.ndim == 3:
            d_scores = d_scores.unsqueeze(-1)

        if return_d_score:
            return rearrange(d_scores, 'n h w m -> n m h w')

        ret = {}
        
        if is_viz:
            if viz_score_fn is not None:
                viz_posterior = viz_score_fn(scores)
                
                viz_posterior_inv = deepcopy(viz_posterior)
                viz_posterior_inv[:,:,:,1:] = 1 - viz_posterior_inv[:,:,:,1:]
                
                scores_viz = (1 - viz_posterior[..., rev]).cumprod(-1)[..., rev].roll(-1, -1) * viz_posterior
                scores_viz[..., -1] = viz_posterior[..., -1]
                
                scores_viz_inv = (1 - viz_posterior_inv[..., rev]).cumprod(-1)[..., rev].roll(-1, -1) * viz_posterior_inv
                scores_viz_inv[..., -1] = viz_posterior_inv[..., -1]
            else:
                scores_viz = d_scores
                
            n_gaussians = xs.shape[-1]
            ret.update(visualize_features(viz_size, n_gaussians, scores_viz, kwargs.get("viz_colors", None)))
            # from PIL import Image
            # import numpy as np
            # viz_colors = torch.load("BED_CONF_COLORS.pt")
            # kwargs["viz_colors"] = viz_colors
            # layout_img = Image.fromarray((((ret['feature_img'][0]+1) / 2) * 255).cpu().numpy().transpose(1,2,0).astype(np.uint8))


        if only_vis:
            return ret

        
        score_img = rearrange(d_scores, 'n h w m -> n m h w')
        ret['scores_pyramid'] = pyramid_resize(score_img, cutoff=interp_size)
    
        
        feature_grid = splat_features_from_scores(ret['scores_pyramid'][interp_size], 
                                                features, 
                                                interp_size, 
                                                channels_last=False,)
        
        ret.update({'feature_grid': feature_grid, 'feature_img': None, 'entropy_img': None})
        if ret_layout:
            layout = {'xs': xs, 'ys': ys, 'covs': covs, 'raw_scores': scores, 'sizes': sizes,
                        'composed_scores': d_scores, 'features': features}
            ret.update(layout)
            
        return ret


@torch.no_grad()
def visualize_features(viz_size=64, n_gaussians=None, scores=None,
                        viz_colors=None) -> Dict[str, Tensor]:
    n_gaussians = n_gaussians+1
   
    rand_colors = viz_colors is None
    viz_colors = viz_colors.to(scores.device) if not rand_colors else torch.rand((n_gaussians,3)).to(scores.device)
    if viz_colors.ndim == 2:
        # viz colors should be [Kmax, 3]
        viz_colors = viz_colors[:n_gaussians][None].repeat_interleave(len(scores), 0)
    elif viz_colors.ndim == 3:
        # viz colors should be [Nbatch, Kmax, 3]
        viz_colors = viz_colors[:, :n_gaussians]
    else:
        viz_colors = torch.rand((n_gaussians,3))
    img = splat_features_from_scores(scores, viz_colors, viz_size)
    if rand_colors:
        imax = img.amax((2, 3))[:, :, None, None]
        imin = img.amin((2, 3))[:, :, None, None]
        feature_img = img.sub(imin).div((imax - imin).clamp(min=1e-5)).mul(2).sub(1)
    else:
        feature_img = img
        
    out = {
        'feature_img': feature_img
    }        
    return out


def rotation_matrix(theta):
    cos = torch.cos(theta)
    sin = torch.sin(theta)
    return torch.stack([cos, sin, -sin, cos], dim=-1).view(*theta.shape, 2, 2)



def pyramid_resize(img, cutoff):
    """

    Args:
        img: [N x C x H x W]
        cutoff: threshold at which to stop pyramid

    Returns: gaussian pyramid

    """
    out = [img]
    while img.shape[-1] > cutoff:
        img = torch.nn.functional.interpolate(img, img.shape[-1] // 2, mode='bilinear', align_corners=False)
        out.append(img)
    return {i.size(-1): i for i in out}


def ellipse_to_gaussian(x, y, a, b, theta):
    """
    将椭圆参数转换为高斯分布的均值和协方差矩阵。

    参数:
    x (float): 椭圆中心的 x 坐标。
    y (float): 椭圆中心的 y 坐标。
    a (float): 椭圆的短半轴长度。
    b (float): 椭圆的长半轴长度。
    theta (float): 椭圆的旋转角度(以弧度为单位), 长半轴逆时针角度。

    返回:
    mean (numpy.ndarray): 高斯分布的均值,形状为 (2,) 的数组,表示 (x, y) 坐标。
    cov_matrix (numpy.ndarray): 高斯分布的协方差矩阵,形状为 (2, 2) 的数组。
    """
    # 均值
    mean = np.array([x, y])
    
    # 协方差的主对角线元素
    # sigma_x = b / np.sqrt(2)
    # sigma_y = a / np.sqrt(2)
    # 不除以 sqrt(2) 也是可以的。这个转换主要是为了在特定的统计上下文中,
    # 使得椭圆的半轴长度对应于高斯分布的一个标准差。
    # 这样做的目的是为了使得椭圆的面积包含了高斯分布约68%的概率质量(在一维高斯分布中,一个标准差的范围内包含了约68%的概率质量)。

    # 协方差的主对角线元素
    sigma_x = b 
    sigma_y = a 
    # 协方差矩阵(未旋转)
    cov_matrix = np.array([[sigma_x**2, 0],
                            [0, sigma_y**2]])
    
    # 旋转矩阵
    R = np.array([[np.cos(theta), -np.sin(theta)],
                  [np.sin(theta), np.cos(theta)]])
    
    # 旋转协方差矩阵
    cov_matrix_rotated = R @ cov_matrix @ R.T
    
    cov_matrix_rotated[0, 1] *= -1  # 反转协方差矩阵的非对角元素
    cov_matrix_rotated[1, 0] *= -1  # 反转协方差矩阵的非对角元素
    
    # eigenvalues, eigenvectors = np.linalg.eig(cov_matrix_rotated)
    
    return mean, cov_matrix_rotated


def gaussian_to_ellipse(mean, cov_matrix):
    """
    将高斯分布的均值和协方差矩阵转换为椭圆参数。

    参数:
    mean (numpy.ndarray): 高斯分布的均值,形状为 (2,) 的数组,表示 (x, y) 坐标。
    cov_matrix (numpy.ndarray): 高斯分布的协方差矩阵,形状为 (2, 2) 的数组。

    返回:
    x (float): 椭圆中心的 x 坐标。
    y (float): 椭圆中心的 y 坐标。
    a (float): 椭圆的短半轴长度。
    b (float): 椭圆的长半轴长度。
    angle_clockwise (float): 椭圆的旋转角度, 短轴顺时针绕x旋转, 0~180度, t以角度为单位。
    """
    # 提取均值
    x, y = mean

    # 计算特征值和特征向量
    eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

    # 计算长半轴和短半轴
    # b = np.sqrt(2 * max(eigenvalues))  # 长半轴
    # a = np.sqrt(2 * min(eigenvalues))  # 短半轴
    
    b = np.sqrt(max(eigenvalues))  # 长半轴
    a = np.sqrt(min(eigenvalues))  # 短半轴

    # 计算短轴的方向
    # 找到最小特征值对应的特征向量
    min_index = np.argmin(eigenvalues)
    min_axis_vector = eigenvectors[:, min_index]
    theta = np.arctan2(min_axis_vector[1], min_axis_vector[0])

    angle_clockwise = np.degrees(theta)  # 转换为度
    
    if angle_clockwise < 0:
        angle_clockwise += 180


    return x, y, a, b, angle_clockwise


def viz_score_fn(score):
    # score = score.clone()
    # score[..., 1:].mul_(2).clamp_(max=1)
    return score


def vis_scores(blob_d_score, viz_size):
    n_gaussians = blob_d_score.shape[1] - 1

    scores_viz = rearrange(blob_d_score, 'n m h w -> n h w m')

    viz_colors = torch.load("BED_CONF_COLORS.pt")
    kwargs = {"viz_colors": viz_colors}
    ret = visualize_features(viz_size=viz_size, n_gaussians=n_gaussians, scores=scores_viz, **kwargs)

    return ret['feature_img']


def vis_gt_ellipse_from_norm_gs(img, gt_mus, gt_covs, color=None):
    '''img: h,w,c 0~255, mus: n,2 covs:n,2,2'''
    # color = (127,127,127)
    result = img.copy()
    height,width,c = img.shape
    max_length = np.sqrt(width**2 + height**2)
    for mu, cov in zip(gt_mus, gt_covs):
        mean = tuple(mu.numpy() for mu in mu.cpu().unbind(-1))
        cov_matrix = cov.cpu().numpy()
    
        xc, yc, a, b, angle_clockwise_short_axis = gaussian_to_ellipse(mean, cov_matrix)
        # print(xc, yc, 2*a, 2*b, angle_clockwise_short_axis)
        
        xc = xc * width
        yc = yc * height
        a = a * max_length
        b = b * max_length
        ellipse = (xc,yc),(a*2,b*2),angle_clockwise_short_axis
        
        if color is None:
            color = [255,0,0]
            
        
        cv2.ellipse(result, ellipse, color, 3)
    
    return result


def vis_gt_ellipse_from_norm_ellipse(img, norm_ellipse, color=None):
    '''img: h,w,c 0~255, norm_ellipse: xc,yc,d1,d2,theta'''
    height,width,c = img.shape
    max_length = np.sqrt(width**2 + height**2)
    (xc,yc), (d1,d2), theta = norm_ellipse
    xc = xc * width
    yc = yc * height
    d1 = d1 * max_length
    d2 = d2 * max_length
    ellipse = (xc,yc),(d1,d2),theta
    if color is None:
        color = [255,0,0]
    cv2.ellipse(img, ellipse, color, 3)
    return img


def vis_gt_ellipse_from_ellipse(img, ellipse, color=None):
    '''img: h,w,c 0~255, ellipse: xc,yc,d1,d2,theta'''
    (xc,yc),(d1,d2),theta = ellipse
    ellipse = (xc,yc),(d1,d2),theta
    if color is None:
        color = [255,0,0]
    cv2.ellipse(img, ellipse, color, 3)
    return img