Spaces:
azhan77168
/
Running on Zero

Yw22 commited on
Commit
dff466e
·
1 Parent(s): 2ad8a58
examples/blobctrl/blobctrl_app.py CHANGED
@@ -114,7 +114,7 @@ blobnet = BlobNetModel.from_pretrained(blobnet_path, ignore_mismatched_sizes=Tru
114
  ## sam
115
  print(f"Loading SAM...")
116
  mobile_sam = sam_model_registry['vit_h'](checkpoint=sam_path).to(device)
117
- mobile_sam.eval()
118
  mobile_predictor = SamPredictor(mobile_sam)
119
  colors = [(255, 0, 0), (0, 255, 0)]
120
  markers = [1, 5]
@@ -1030,14 +1030,17 @@ def segmentation(img, sel_pix):
1030
  mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
1031
  with torch.no_grad():
1032
  masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False)
1033
- print("================")
1034
  print(img)
1035
  print(img.shape)
 
1036
  print(points)
1037
  print(labels)
 
1038
  print(masks)
1039
  print(np.unique(masks))
1040
  print("================")
 
1041
  output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255
1042
  for i in range(3):
1043
  output_mask[masks[0] == True, i] = 0.0
@@ -1059,11 +1062,11 @@ def get_point(img, sel_pix, evt: gr.SelectData):
1059
  # online show seg mask
1060
  print(evt.index)
1061
  masked_img, output_mask = segmentation(img, sel_pix)
1062
- print(masked_img.shape)
1063
- print(output_mask.shape)
1064
- print(masked_img)
1065
- print(output_mask)
1066
- print(np.unique(output_mask))
1067
 
1068
  return masked_img.astype(np.uint8), output_mask
1069
 
 
114
  ## sam
115
  print(f"Loading SAM...")
116
  mobile_sam = sam_model_registry['vit_h'](checkpoint=sam_path).to(device)
117
+ # mobile_sam.eval()
118
  mobile_predictor = SamPredictor(mobile_sam)
119
  colors = [(255, 0, 0), (0, 255, 0)]
120
  markers = [1, 5]
 
1030
  mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
1031
  with torch.no_grad():
1032
  masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False)
1033
+ print("=======img=========")
1034
  print(img)
1035
  print(img.shape)
1036
+ print("=======points and labels=========")
1037
  print(points)
1038
  print(labels)
1039
+ print("=======masks=========")
1040
  print(masks)
1041
  print(np.unique(masks))
1042
  print("================")
1043
+ print(mobile_predictor)
1044
  output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255
1045
  for i in range(3):
1046
  output_mask[masks[0] == True, i] = 0.0
 
1062
  # online show seg mask
1063
  print(evt.index)
1064
  masked_img, output_mask = segmentation(img, sel_pix)
1065
+ # print(masked_img.shape)
1066
+ # print(output_mask.shape)
1067
+ # print(masked_img)
1068
+ # print(output_mask)
1069
+ # print(np.unique(output_mask))
1070
 
1071
  return masked_img.astype(np.uint8), output_mask
1072
 
requirements.txt CHANGED
@@ -4,10 +4,10 @@ accelerate==1.5.2
4
  huggingface_hub==0.29.3
5
  gradio==5.21.0
6
  opencv-python==4.8.1.78
7
- numpy==1.26.0
8
  einops==0.8.1
9
  matplotlib==3.10.1
10
- segment_anything
11
  torch==2.2.0
12
  torchvision==0.17.0
13
  torchaudio==2.2.0
 
4
  huggingface_hub==0.29.3
5
  gradio==5.21.0
6
  opencv-python==4.8.1.78
7
+ numpy==1.26.2
8
  einops==0.8.1
9
  matplotlib==3.10.1
10
+ segment_anything==1.0
11
  torch==2.2.0
12
  torchvision==0.17.0
13
  torchaudio==2.2.0