File size: 17,267 Bytes
df5230f
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d441e
 
d0fff1f
f0d441e
df5230f
 
 
461c51a
df5230f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a12f5
df5230f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8acb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df5230f
 
47a12f5
df5230f
 
 
 
47a12f5
df5230f
 
 
 
 
47a12f5
dc8acb8
 
 
 
 
 
 
d939c9c
dc8acb8
d939c9c
dc8acb8
 
 
 
 
d939c9c
dc8acb8
d939c9c
dc8acb8
df5230f
47a12f5
 
df5230f
 
dc8acb8
 
 
 
47a12f5
df5230f
bfc302b
69c288d
df5230f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9f146
 
df5230f
2c9f146
 
df5230f
04452e3
df5230f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae624e0
df5230f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c80ba4
df5230f
 
2844a3a
df5230f
2844a3a
df5230f
 
 
2c80ba4
df5230f
2c80ba4
df5230f
230b9d7
df5230f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c80ba4
df5230f
 
 
 
 
 
 
 
10bdb89
df5230f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2844a3a
 
 
 
230b9d7
df5230f
 
2c80ba4
 
 
 
 
df5230f
 
 
 
 
 
 
 
 
2844a3a
df5230f
 
 
 
 
 
 
 
f0d441e
 
 
df5230f
d0fff1f
dc8acb8
d0fff1f
dc8acb8
d0097b1
 
df5230f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import gradio as gr
import huggingface_hub
import pillow_avif
import spaces
import torch
import gc
from huggingface_hub import snapshot_download
from pillow_heif import register_heif_opener

from pipelines.pipeline_infu_flux import InfUFluxPipeline

# Register HEIF support for Pillow
register_heif_opener()

class ModelVersion:
    STAGE_1 = "sim_stage1"
    STAGE_2 = "aes_stage2"

    DEFAULT_VERSION = STAGE_2
    
ENABLE_ANTI_BLUR_DEFAULT = False
ENABLE_REALISM_DEFAULT = False

loaded_pipeline_config = {
    "model_version": "aes_stage2",
    "enable_realism": False,
    "enable_anti_blur": False,
    'pipeline': None
}


def download_models():
    snapshot_download(repo_id='ByteDance/InfiniteYou', local_dir='./models/InfiniteYou', local_dir_use_symlinks=False)
    try:
        snapshot_download(repo_id='black-forest-labs/FLUX.1-dev', local_dir='./models/FLUX.1-dev', local_dir_use_symlinks=False)
    except Exception as e:
        print(e)
        print('\nYou are downloading `black-forest-labs/FLUX.1-dev` to `./models/FLUX.1-dev` but failed. '
              'Please accept the agreement and obtain access at https://huggingface.co/black-forest-labs/FLUX.1-dev. '
              'Then, use `huggingface-cli login` and your access tokens at https://huggingface.co/settings/tokens to authenticate. '
              'After that, run the code again.')
        print('\nYou can also download it manually from HuggingFace and put it in `./models/InfiniteYou`, '
              'or you can modify `base_model_path` in `app.py` to specify the correct path.')
        exit()


def init_pipeline(model_version, enable_realism, enable_anti_blur):
    loaded_pipeline_config["enable_realism"] = enable_realism
    loaded_pipeline_config["enable_anti_blur"] = enable_anti_blur
    loaded_pipeline_config["model_version"] = model_version

    pipeline = loaded_pipeline_config['pipeline']
    gc.collect()
    torch.cuda.empty_cache()

    model_path = f'./models/InfiniteYou/infu_flux_v1.0/{model_version}'
    print(f'loading model from {model_path}')

    pipeline = InfUFluxPipeline(
        base_model_path='./models/FLUX.1-dev',
        infu_model_path=model_path,
        insightface_root_path='./models/InfiniteYou/supports/insightface',
        image_proj_num_tokens=8,
        infu_flux_version='v1.0',
        model_version=model_version,
    )

    loaded_pipeline_config['pipeline'] = pipeline

    pipeline.pipe.delete_adapters(['realism', 'anti_blur'])
    loras = []
    if enable_realism: loras.append(['realism', 1.0])
    if enable_anti_blur: loras.append(['anti_blur', 1.0])
    pipeline.load_loras_state_dict(loras)

    return pipeline


def prepare_pipeline(model_version, enable_realism, enable_anti_blur):
    if (
        loaded_pipeline_config['pipeline'] is not None
        and loaded_pipeline_config["enable_realism"] == enable_realism 
        and loaded_pipeline_config["enable_anti_blur"] == enable_anti_blur
        and model_version == loaded_pipeline_config["model_version"]
    ):
        return loaded_pipeline_config['pipeline']
    
    loaded_pipeline_config["enable_realism"] = enable_realism
    loaded_pipeline_config["enable_anti_blur"] = enable_anti_blur
    loaded_pipeline_config["model_version"] = model_version

    pipeline = loaded_pipeline_config['pipeline']
    if pipeline is None or pipeline.model_version != model_version: 
        print(f'Switching model to {model_version}')
        pipeline.model_version = model_version
        if model_version == 'aes_stage2':
            pipeline.infusenet_sim.cpu()
            pipeline.image_proj_model_sim.cpu()
            torch.cuda.empty_cache()
            pipeline.infusenet_aes.to('cuda')
            pipeline.pipe.controlnet = pipeline.infusenet_aes
            pipeline.image_proj_model_aes.to('cuda')
            pipeline.image_proj_model = pipeline.image_proj_model_aes
        else:
            pipeline.infusenet_aes.cpu()
            pipeline.image_proj_model_aes.cpu()
            torch.cuda.empty_cache()
            pipeline.infusenet_sim.to('cuda')
            pipeline.pipe.controlnet = pipeline.infusenet_sim
            pipeline.image_proj_model_sim.to('cuda')
            pipeline.image_proj_model = pipeline.image_proj_model_sim

        loaded_pipeline_config['pipeline'] = pipeline

    pipeline.pipe.delete_adapters(['realism', 'anti_blur'])
    loras = []
    if enable_realism: loras.append(['realism', 1.0])
    if enable_anti_blur: loras.append(['anti_blur', 1.0])
    pipeline.load_loras_state_dict(loras)

    return pipeline


@spaces.GPU(duration=120)
def generate_image(
    input_image, 
    control_image, 
    prompt, 
    seed, 
    width,
    height,
    guidance_scale, 
    num_steps, 
    infusenet_conditioning_scale, 
    infusenet_guidance_start,
    infusenet_guidance_end,
    enable_realism,
    enable_anti_blur,
    model_version
):
    try:
        pipeline = prepare_pipeline(model_version=model_version, enable_realism=enable_realism, enable_anti_blur=enable_anti_blur)

        if seed == 0:
            seed = torch.seed() & 0xFFFFFFFF

        image = pipeline(
            id_image=input_image,
            prompt=prompt,
            control_image=control_image,
            seed=seed,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_steps=num_steps,
            infusenet_conditioning_scale=infusenet_conditioning_scale,
            infusenet_guidance_start=infusenet_guidance_start,
            infusenet_guidance_end=infusenet_guidance_end,
        )
    except Exception as e:
        print(e)
        gr.Error(f"An error occurred: {e}")
        return gr.update()

    return gr.update(value=image, label=f"Generated Image, seed = {seed}")


def generate_examples(id_image, control_image, prompt_text, seed, enable_realism, enable_anti_blur, model_version):
    return generate_image(id_image, control_image, prompt_text, seed, 864, 1152, 3.5, 30, 1.0, 0.0, 1.0, enable_realism, enable_anti_blur, model_version)


sample_list = [
    ['./assets/examples/yann-lecun_resize.jpg', None, 'A sophisticated gentleman exuding confidence. He is dressed in a 1990s brown plaid jacket with a high collar, paired with a dark grey turtleneck. His trousers are tailored and charcoal in color, complemented by a sleek leather belt. The background showcases an elegant library with bookshelves, a marble fireplace, and warm lighting, creating a refined and cozy atmosphere. His relaxed posture and casual hand-in-pocket stance add to his composed and stylish demeanor', 666, False, False, 'aes_stage2'],
    ['./assets/examples/yann-lecun_resize.jpg', './assets/examples/man_pose.jpg', 'A man, portrait, cinematic', 42, True, False, 'aes_stage2'],
    ['./assets/examples/yann-lecun_resize.jpg', './assets/examples/yann-lecun_resize.jpg', 'A man, portrait, cinematic', 12345, False, False, 'sim_stage1'],
    ['./assets/examples/yangmi.jpg', None, 'A woman, portrait, cinematic', 1621695706, False, False, 'sim_stage1'],
    ['./assets/examples/yangmi.jpg', None, 'A young woman holding a sign with the text "InfiniteYou", "Infinite" in black and "You" in red, pure background', 3724009366, False, False, 'aes_stage2'],
    ['./assets/examples/yangmi.jpg', None, 'A photo of an elegant Javanese bride in traditional attire, with long hair styled into intricate a braid made of many fresh flowers, wearing a delicate headdress made from sequins and beads. She\'s holding flowers, light smiling at the camera, against a backdrop adorned with orchid blooms. The scene captures her grace as she stands amidst soft pastel colors, adding to its dreamy atmosphere', 42, True, False, 'aes_stage2'],
    ['./assets/examples/yangmi.jpg', None, 'A photo of an elegant Javanese bride in traditional attire, with long hair styled into intricate a braid made of many fresh flowers, wearing a delicate headdress made from sequins and beads. She\'s holding flowers, light smiling at the camera, against a backdrop adorned with orchid blooms. The scene captures her grace as she stands amidst soft pastel colors, adding to its dreamy atmosphere', 42, False, False, 'sim_stage1'],
]

with gr.Blocks() as demo:
    session_state = gr.State({})
    default_model_version = "v1.0"

    gr.HTML("""
    <div style="text-align: center; max-width: 900px; margin: 0 auto;">
        <h1 style="font-size: 1.5rem; font-weight: 700; display: block;">InfiniteYou-FLUX</h1>
        <h2 style="font-size: 1.2rem; font-weight: 300; margin-bottom: 1rem; display: block;">Official Gradio Demo for <a href="https://arxiv.org/abs/2503.16418">InfiniteYou: Flexible Photo Recrafting While Preserving Your Identity</a></h2>
        <a href="https://bytedance.github.io/InfiniteYou">[Project Page]</a>&ensp;
        <a href="https://arxiv.org/abs/2503.16418">[Paper]</a>&ensp;
        <a href="https://github.com/bytedance/InfiniteYou">[Code]</a>&ensp;
        <a href="https://huggingface.co/ByteDance/InfiniteYou">[Model]</a>
    </div>
    """)

    gr.Markdown("""
    ### 💡 How to Use This Demo:
    1. **Upload an identity (ID) image containing a human face.** For multiple faces, only the largest face will be detected. The face should ideally be clear and large enough, without significant occlusions or blur.
    2. **Enter the text prompt to describe the generated image and select the model version.** Please refer to **important usage tips** under the Generated Image field.
    3. *[Optional] Upload a control image containing a human face.* Only five facial keypoints will be extracted to control the generation. If not provided, we use a black control image, indicating no control.
    4. *[Optional] Adjust advanced hyperparameters or apply optional LoRAs to meet personal needs.* Please refer to **important usage tips** under the Generated Image field.
    5. **Click the "Generate" button to generate an image.** Enjoy!
    """)
    
    with gr.Row():
        with gr.Column(scale=3):
            with gr.Row():
                ui_id_image = gr.Image(label="Identity Image", type="pil", scale=3, height=370, min_width=100)

                with gr.Column(scale=2, min_width=100):
                    ui_control_image = gr.Image(label="Control Image [Optional]", type="pil", height=370, min_width=100)
            
            ui_prompt_text = gr.Textbox(label="Prompt", value="Portrait, 4K, high quality, cinematic")
            ui_model_version = gr.Dropdown(
                label="Model Version",
                choices=[ModelVersion.STAGE_1, ModelVersion.STAGE_2],
                value=ModelVersion.DEFAULT_VERSION,
            )

            ui_btn_generate = gr.Button("Generate")
            with gr.Accordion("Advanced", open=False):
                with gr.Row():
                    ui_num_steps = gr.Number(label="num steps", value=30)
                    ui_seed = gr.Number(label="seed (0 for random)", value=0)
                with gr.Row():
                    ui_width = gr.Number(label="width", value=864)
                    ui_height = gr.Number(label="height", value=1152)
                ui_guidance_scale = gr.Number(label="guidance scale", value=3.5, step=0.5)
                ui_infusenet_conditioning_scale = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="infusenet conditioning scale")
                with gr.Row():
                    ui_infusenet_guidance_start = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="infusenet guidance start")
                    ui_infusenet_guidance_end = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="infusenet guidance end")

            with gr.Accordion("LoRAs [Optional]", open=True):
                with gr.Row():
                    ui_enable_realism = gr.Checkbox(label="Enable realism LoRA", value=ENABLE_REALISM_DEFAULT)
                    ui_enable_anti_blur = gr.Checkbox(label="Enable anti-blur LoRA", value=ENABLE_ANTI_BLUR_DEFAULT)

        with gr.Column(scale=2):
            image_output = gr.Image(label="Generated Image", interactive=False, height=550, format='png')
            gr.Markdown(
                """
                ### ❗️ Important Usage Tips:
                - **Model Version**: `aes_stage2` is used by default for better text-image alignment and aesthetics. For higher ID similarity, please try `sim_stage1`.
                - **Useful Hyperparameters**: Usually, there is NO need to adjust too much. If necessary, try a slightly larger `--infusenet_guidance_start` (*e.g.*, `0.1`) only (especially helpful for `sim_stage1`). If still not satisfactory, then try a slightly smaller `--infusenet_conditioning_scale` (*e.g.*, `0.9`).
                - **Optional LoRAs**: `realism` and `anti-blur`. To enable them, please check the corresponding boxes. They are optional and were NOT used in our paper.
                - **Gender Prompt**: If the generated gender is not preferred, add specific words in the prompt, such as 'a man', 'a woman', *etc*. We encourage using inclusive and respectful language.
                """
            )

    gr.Examples(
        sample_list,
        inputs=[ui_id_image, ui_control_image, ui_prompt_text, ui_seed, ui_enable_realism, ui_enable_anti_blur, ui_model_version],
        outputs=[image_output],
        fn=generate_examples,
        cache_examples=False
    )

    ui_btn_generate.click(
        generate_image, 
        inputs=[
            ui_id_image, 
            ui_control_image, 
            ui_prompt_text, 
            ui_seed, 
            ui_width,
            ui_height,
            ui_guidance_scale, 
            ui_num_steps, 
            ui_infusenet_conditioning_scale, 
            ui_infusenet_guidance_start, 
            ui_infusenet_guidance_end,
            ui_enable_realism,
            ui_enable_anti_blur,
            ui_model_version
        ], 
        outputs=[image_output], 
        concurrency_id="gpu"
    )

    with gr.Accordion("Local Gradio Demo for Developers", open=False):
        gr.Markdown(
            'Please refer to our GitHub repository to [run the InfiniteYou-FLUX gradio demo locally](https://github.com/bytedance/InfiniteYou#local-gradio-demo).'
        )
    
    gr.Markdown(
        """
        ---
        ### 📜 Disclaimer and Licenses 
        Some images in this demo are from public domains or generated by models. These pictures are intended solely to show the capabilities of our research. If you have any concerns, please contact us, and we will promptly remove any inappropriate content.
        
        The use of the released code, model, and demo must strictly adhere to the respective licenses. 
        Our code is released under the [Apache 2.0 License](https://github.com/bytedance/InfiniteYou/blob/main/LICENSE), 
        and our model is released under the [Creative Commons Attribution-NonCommercial 4.0 International Public License](https://huggingface.co/ByteDance/InfiniteYou/blob/main/LICENSE) 
        for academic research purposes only. Any manual or automatic downloading of the face models from [InsightFace](https://github.com/deepinsight/insightface), 
        the [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) base model, LoRAs, *etc.*, must follow their original licenses and be used only for academic research purposes.

        This research aims to positively impact the Generative AI field. Users are granted freedom to create images using this tool, but they must comply with local laws and use it responsibly. The developers do not assume any responsibility for potential misuse.
        """
    )    

    gr.Markdown(
        """
        ### 📖 Citation

        If you find InfiniteYou useful for your research or applications, please cite our paper:

        ```bibtex
        @article{jiang2025infiniteyou,
          title={{InfiniteYou}: Flexible Photo Recrafting While Preserving Your Identity},
          author={Jiang, Liming and Yan, Qing and Jia, Yumin and Liu, Zichuan and Kang, Hao and Lu, Xin},
          journal={arXiv preprint},
          volume={arXiv:2503.16418},
          year={2025}
        }
        ```

        We also appreciate it if you could give a star ⭐ to our [Github repository](https://github.com/bytedance/InfiniteYou). Thanks a lot!
        """
    )


huggingface_hub.login(os.getenv('PRIVATE_HF_TOKEN'))

download_models()

init_pipeline(model_version=ModelVersion.DEFAULT_VERSION, enable_realism=ENABLE_REALISM_DEFAULT, enable_anti_blur=ENABLE_ANTI_BLUR_DEFAULT)

# demo.queue()
demo.launch()
# demo.launch(server_name='0.0.0.0')  # IPv4
# demo.launch(server_name='[::]')  # IPv6