from fastapi import APIRouter, HTTPException, status, BackgroundTasks, UploadFile, Query from .Schema import GeneratorRequest from .utils.GroqInstruct import chatbot, VideoOutput from .utils.HuggingChat import Hugging from .Story.Story import Story import asyncio, pprint, json from tqdm import tqdm from .database.Model import models, database_url, Scene, Project, database from .utils.RenderVideo import RenderVideo from .Prompts.StoryGen import Prompt from App.Editor.editorRoutes import celery_task, EditorRequest async def update_scene(model_scene): await model_scene.generate_scene_data() await model_scene.update(**model_scene.__dict__) async def main(request: GeneratorRequest): topic = request.prompt renderr = RenderVideo() huggChat = Hugging() if request.grok: message = chatbot(Prompt.format(topic=topic)) else: temp = await huggChat.chat( Prompt.format(topic=topic) + f"Match your response to the following schema: {VideoOutput.model_json_schema()} Make sure to return an instance of the JSON, not the schema itself, and nothing else." ) message = json.loads(temp.split("```json")[1].split("```")[0].strip()) generated_story = Story.from_dict(message["scenes"]) print("Generated Story ✅") x = await Project.objects.create(name=topic[0:100]) # Assuming generated_story.scenes is a list of scenes scene_updates = [] with tqdm(total=len(generated_story.scenes)) as pbar: for i in range(0, len(generated_story.scenes), 2): batch = generated_story.scenes[i : i + 2] # Get a batch of two story scenes batch_updates = [] for story_scene in batch: model_scene = await Scene.objects.create(project=x) model_scene.image_prompts = story_scene.image_prompts model_scene.narration = story_scene.narration await model_scene.update(**model_scene.__dict__) batch_updates.append( update_scene(model_scene) ) # Append update coroutine to batch_updates scene_updates.extend(batch_updates) # Accumulate updates for later awaiting await asyncio.gather( *batch_updates ) # Await update coroutines for this batch pbar.update(len(batch)) # Increment progress bar by the size of the batch temp = await x.generate_json() # print(temp) # await renderr.render_video(temp) request = EditorRequest.model_validate(temp) await celery_task(video_task=request) generator_router = APIRouter(tags=["video-Generator"]) @generator_router.post("/generate_video") async def generate_video( videoRequest: GeneratorRequest, background_task: BackgroundTasks ): background_task.add_task(main, videoRequest) return {"task_id": "started"}