File size: 8,061 Bytes
b6b3361
fb3c56f
257e92c
1ffdc41
d137ecb
07631e1
 
 
 
14aacf1
d137ecb
33e23a9
6234905
 
 
 
 
07631e1
235bceb
74a9029
619ea62
97102e7
 
 
619ea62
97102e7
 
 
 
6b3b7ad
257e92c
 
 
 
 
122cc50
257e92c
 
 
 
 
122cc50
257e92c
 
 
 
 
 
5bc8e83
 
 
122cc50
a309f78
 
74a9029
328e862
 
b667879
 
 
 
826930b
 
fb3c56f
07631e1
6aa3952
 
c16cd96
6aa3952
826930b
990cdd9
2290e9c
990cdd9
826930b
da84aa4
 
 
2af2ca8
da84aa4
 
07631e1
 
 
da84aa4
 
c4e11f2
 
 
 
da84aa4
c4e11f2
da84aa4
 
 
 
 
 
74a9029
 
257e92c
a6818a7
257e92c
74a9029
257e92c
 
 
 
 
74a9029
257e92c
 
 
da84aa4
be1fb13
48a69b6
07631e1
 
 
 
 
 
 
 
 
 
 
12bb931
07631e1
 
a309f78
da84aa4
6aa3952
b667879
826930b
 
 
 
 
990cdd9
826930b
990cdd9
826930b
 
b667879
5745bde
7f18929
9f5ffb5
c16cd96
 
 
 
9f5ffb5
c16cd96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5ffb5
 
c16cd96
b161f8c
c16cd96
 
 
6d4a898
4661cbb
781dafe
 
 
4661cbb
6b3b7ad
4661cbb
6b3b7ad
4661cbb
1d35c27
4661cbb
6b3b7ad
 
 
303d9ae
6b3b7ad
33e23a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3c56f
f2fd3af
5e07e0e
 
781dafe
5e07e0e
fb3c56f
781dafe
 
 
 
 
 
 
 
d137ecb
 
 
328e862
 
d137ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import time
from langchain_core.pydantic_v1 import BaseModel, Field
from fastapi import FastAPI, HTTPException, Query, Request
from fastapi.responses import StreamingResponse,Response
from fastapi.middleware.cors import CORSMiddleware

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from TextGen.suno import custom_generate_audio, get_audio_information,generate_lyrics
from TextGen.diffusion import generate_image
#from coqui import predict
from langchain_google_genai import (
    ChatGoogleGenerativeAI,
    HarmBlockThreshold,
    HarmCategory,
)
from TextGen import app
from gradio_client import Client, handle_file
from typing import List
from elevenlabs.client import ElevenLabs
from elevenlabs import stream


Eleven_client = ElevenLabs(
  api_key=os.environ["ELEVEN_API_KEY"], # Defaults to ELEVEN_API_KEY
)


Last_message=None
class PlayLastMusic(BaseModel):
    '''plays the lastest created music '''
    Desicion: str = Field(
        ..., description="Yes or No"
    )

class CreateLyrics(BaseModel):
    f'''create some Lyrics for a new music'''
    Desicion: str = Field(
        ..., description="Yes or No"
    )

class CreateNewMusic(BaseModel):
    f'''create a new music with the Lyrics previously computed'''
    Name: str = Field(
        ..., description="tags to describe the new music"
    )

class SongRequest(BaseModel):
    prompt: str | None  = None
    tags: List[str] | None = None

class Message(BaseModel):
    npc: str | None  = None
    messages: List[str] | None = None
class ImageGen(BaseModel):
    prompt: str | None  = None  
class VoiceMessage(BaseModel):
    npc: str | None  = None
    input: str | None = None
    language: str | None = "en"
    genre:str | None = "Male"
    
song_base_api=os.environ["VERCEL_API"]

my_hf_token=os.environ["HF_TOKEN"]

#tts_client = Client("Jofthomas/xtts",hf_token=my_hf_token)

main_npcs={
    "Blacksmith":"./voices/Blacksmith.mp3",
    "Herbalist":"./voices/female.mp3",
    "Bard":"./voices/Bard_voice.mp3"
}
main_npc_system_prompts={
    "Blacksmith":"You are a blacksmith in a video game",
    "Herbalist":"You are an herbalist in a video game",
    "Witch":"You are a witch in a video game. You are disguised as a potion seller in a small city where adventurers come to challenge the portal. You are selling some magic spells in a UI that the player only sees. Don't event too much lore and just follow the standard role of a merchant.",
    "Bard":"You are a bard in a video game"
}
class Generate(BaseModel):
    text:str

def generate_text(messages: List[str], npc:str):
    print(npc)
    if npc in main_npcs:
        system_prompt=main_npc_system_prompts[npc]
    else:
        system_prompt="you're a character in a video game. Play along."
    print(system_prompt)    
    new_messages=[{"role": "user", "content": system_prompt}]
    for index, message in enumerate(messages):
      if index%2==0:
        new_messages.append({"role": "user", "content": message})
      else:
        new_messages.append({"role": "assistant", "content": message})
    print(new_messages)
    # Initialize the LLM
    llm = ChatGoogleGenerativeAI(
        model="gemini-1.5-pro-latest",
        max_output_tokens=100,
        temperature=1,
        safety_settings={
                HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE
            },
    )
    if npc=="bard":
        llm = llm.bind_tools([PlayLastMusic,CreateNewMusic,CreateLyrics])

    llm_response = llm.invoke(new_messages)
    print(llm_response)
    return Generate(text=llm_response.content)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/", tags=["Home"])
def api_home():
    return {'detail': 'Everchanging Quest backend, nothing to see here'}

@app.post("/api/generate", summary="Generate text from prompt", tags=["Generate"], response_model=Generate)
def inference(message: Message):
    return generate_text(messages=message.messages, npc=message.npc)

#Dummy function for now
def determine_vocie_from_npc(npc,genre):
    if npc in main_npcs:
        return main_npcs[npc]
    else:
        if genre =="Male":
            "./voices/default_male.mp3"
        if genre=="Female":
            return"./voices/default_female.mp3"
        else:
            return "./voices/narator_out.wav"
    

@app.post("/generate_wav")
async def generate_wav(message: VoiceMessage):
#    try:
#        voice = determine_vocie_from_npc(message.npc, message.genre)
#        audio_file_pth = handle_file(voice)
#
        # Generator function to yield audio chunks
#        async def audio_stream():
#            result = tts_client.predict(
#                prompt=message.input,
#                language=message.language,
#                audio_file_pth=audio_file_pth,
#                mic_file_path=None,
#                use_mic=False,
#                voice_cleanup=False,
#                no_lang_auto_detect=False,
#                agree=True,
#                api_name="/predict"
#            )
#            for sampling_rate, audio_chunk in result:
#                yield audio_chunk.tobytes()
#                await asyncio.sleep(0)  # Yield control to the event loop

        # Return the generated audio as a streaming response
 #       return StreamingResponse(audio_stream(), media_type="audio/wav")

  #  except Exception as e:
   #     raise HTTPException(status_code=500, detail=str(e))
    return 200


@app.get("/generate_voice_eleven", response_class=StreamingResponse)
@app.post("/generate_voice_eleven", response_class=StreamingResponse)
def generate_voice_eleven(message: VoiceMessage = None):
    global Last_message  # Declare Last_message as global
    if message is None:
        message = Last_message
    else:
        Last_message = message

    def audio_stream():
        # Generate the audio stream from ElevenLabs
        for chunk in Eleven_client.generate(text=message.input, stream=True):
            yield chunk

    return StreamingResponse(audio_stream(), media_type="audio/mpeg")
#@app.get("/generate_voice_coqui", response_class=StreamingResponse)
#@app.post("/generate_voice_coqui", response_class=StreamingResponse)
#def generate_voice_coqui(message: VoiceMessage = None):
#    global Last_message 
#    if message is None:
#        message = Last_message
#    else:
#        Last_message = message
#
#    def audio_stream():
#        voice = determine_vocie_from_npc(message.npc, message.genre)
#        result = predict(
#                prompt=message.input,
#                language=message.language,
#                audio_file_pth=voice,
#                mic_file_path=None,
#                use_mic=False,
#                voice_cleanup=False,
#                no_lang_auto_detect=False,
#                agree=True,
#            )
#        # Generate the audio stream from ElevenLabs
#        for chunk in result:
#            print("received : ",chunk)
#            yield chunk#
#
#    return StreamingResponse(audio_stream(),media_type="audio/mpeg")   
@app.get("/generate_song")
async def generate_song():
    text="""You are a bard in a video game singing the tales of a little girl in red hood."""

    song_lyrics=generate_lyrics({
        "prompt": f"{text}",
        })
    data = custom_generate_audio({
        "prompt": song_lyrics['text'],
        "tags": "male bard",
        "title":"Everchangin_Quest_song",
        "wait_audio":True,
       
    })
    infos=get_audio_information(f"{data[0]['id']},{data[1]['id']}")
    return infos

@app.post('/generate_image')
def Imagen(prompt:ImageGen=None):
    image_bytes=generate_image(ImageGen.prompt)
    return Response(content=image_bytes, media_type="image/png")