File size: 3,666 Bytes
b6b3361
fb3c56f
07631e1
6aa3952
 
07631e1
 
 
 
ac79266
6234905
 
 
 
 
07631e1
4674077
 
fb3c56f
07631e1
6aa3952
 
ea8f6b9
6aa3952
 
 
07631e1
 
 
 
 
 
 
 
 
6234905
 
 
 
 
 
07631e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa3952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3c56f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import time
from pydantic import BaseModel
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from TextGen.suno import custom_generate_audio, get_audio_information
from langchain_google_genai import (
    ChatGoogleGenerativeAI,
    HarmBlockThreshold,
    HarmCategory,
)
from TextGen import app
from gradio_client import Client

song_base_api=os.environ["VERCEL_API"]

my_hf_token=os.environ["HF_TOKEN"]

tts_client = Client("https://jofthomas-xtts.hf.space/",hf_token=my_hf_token)



class Generate(BaseModel):
    text:str

def generate_text(prompt: str):
    if prompt == "":
        return {"detail": "Please provide a prompt."}
    else:
        prompt = PromptTemplate(template=prompt, input_variables=['Prompt'])

        # Initialize the LLM
        llm = ChatGoogleGenerativeAI(
            model="gemini-pro",
            safety_settings={
                HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
            },
        )

        llmchain = LLMChain(
            prompt=prompt,
            llm=llm
        )

        llm_response = llmchain.run({"Prompt": prompt})
        return Generate(text=llm_response)

        

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/", tags=["Home"])
def api_home():
    return {'detail': 'Welcome to FastAPI TextGen Tutorial!'}

@app.post("/api/generate", summary="Generate text from prompt", tags=["Generate"], response_model=Generate)
def inference(input_prompt: str):
    return generate_text(prompt=input_prompt)

@app.get("/generate_wav")
async def generate_wav(text: str, language: str = "en"):
    try:
        # Use the Gradio client to generate the wav file
        result = tts_client.predict(
            text,  # str in 'Text Prompt' Textbox component
            language,  # str in 'Language' Dropdown component
            "./narator_out.wav",  # str (filepath on your computer (or URL) of file) in 'Reference Audio' Audio component
            "./narator_out.wav",  # str (filepath on your computer (or URL) of file) in 'Use Microphone for Reference' Audio component
            False,  # bool in 'Use Microphone' Checkbox component
            False,  # bool in 'Cleanup Reference Voice' Checkbox component
            False,  # bool in 'Do not use language auto-detect' Checkbox component
            True,  # bool in 'Agree' Checkbox component
            fn_index=1
        )

        # Get the path of the generated wav file
        wav_file_path = result[1]

        # Return the generated wav file as a response
        return FileResponse(wav_file_path, media_type="audio/wav", filename="output.wav")

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/generate_song")
async def generate_song(text: str):
    try:
        data = custom_generate_audio({
            "prompt": f"{text}",
            "make_instrumental": False,
            "wait_audio": False
        })
        ids = f"{data[0]['id']},{data[1]['id']}"
        print(f"ids: {ids}")

        for _ in range(60):
            data = get_audio_information(ids)
            if data[0]["status"] == 'streaming':
                print(f"{data[0]['id']} ==> {data[0]['audio_url']}")
                print(f"{data[1]['id']} ==> {data[1]['audio_url']}")
                break
            # sleep 5s
            time.sleep(5)
    except:
        print("Error")