Update TextGen/router.py
Browse files- TextGen/router.py +158 -158
TextGen/router.py
CHANGED
|
@@ -3,14 +3,14 @@ import time
|
|
| 3 |
from io import BytesIO
|
| 4 |
from langchain_core.pydantic_v1 import BaseModel, Field
|
| 5 |
from fastapi import FastAPI, HTTPException, Query, Request
|
| 6 |
-
from fastapi.responses import StreamingResponse,Response
|
| 7 |
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
|
| 9 |
from langchain.chains import LLMChain
|
| 10 |
from langchain.prompts import PromptTemplate
|
| 11 |
-
from TextGen.suno import custom_generate_audio, get_audio_information,generate_lyrics
|
| 12 |
-
#from TextGen.diffusion import generate_image
|
| 13 |
-
#from coqui import predict
|
| 14 |
from langchain_google_genai import (
|
| 15 |
ChatGoogleGenerativeAI,
|
| 16 |
HarmBlockThreshold,
|
|
@@ -22,13 +22,12 @@ from typing import List
|
|
| 22 |
from elevenlabs.client import ElevenLabs
|
| 23 |
from elevenlabs import Voice, VoiceSettings, stream
|
| 24 |
|
| 25 |
-
|
| 26 |
Eleven_client = ElevenLabs(
|
| 27 |
-
|
| 28 |
)
|
| 29 |
|
|
|
|
| 30 |
|
| 31 |
-
Last_message=None
|
| 32 |
class PlayLastMusic(BaseModel):
|
| 33 |
'''plays the lastest created music '''
|
| 34 |
Desicion: str = Field(
|
|
@@ -36,85 +35,88 @@ class PlayLastMusic(BaseModel):
|
|
| 36 |
)
|
| 37 |
|
| 38 |
class CreateLyrics(BaseModel):
|
| 39 |
-
|
| 40 |
Desicion: str = Field(
|
| 41 |
..., description="Yes or No"
|
| 42 |
)
|
| 43 |
|
| 44 |
class CreateNewMusic(BaseModel):
|
| 45 |
-
|
| 46 |
Name: str = Field(
|
| 47 |
..., description="tags to describe the new music"
|
| 48 |
)
|
| 49 |
|
| 50 |
class SongRequest(BaseModel):
|
| 51 |
-
prompt: str | None
|
| 52 |
tags: List[str] | None = None
|
| 53 |
|
| 54 |
class Message(BaseModel):
|
| 55 |
-
npc: str | None
|
| 56 |
messages: List[str] | None = None
|
|
|
|
| 57 |
class ImageGen(BaseModel):
|
| 58 |
-
prompt: str | None
|
|
|
|
| 59 |
class VoiceMessage(BaseModel):
|
| 60 |
-
npc: str | None
|
| 61 |
input: str | None = None
|
| 62 |
language: str | None = "en"
|
| 63 |
-
genre:str | None = "Male"
|
| 64 |
-
|
| 65 |
-
song_base_api=os.environ["VERCEL_API"]
|
| 66 |
|
| 67 |
-
|
|
|
|
| 68 |
|
| 69 |
-
|
| 70 |
|
| 71 |
-
main_npcs={
|
| 72 |
-
"Blacksmith":"./voices/Blacksmith.mp3",
|
| 73 |
-
"Herbalist":"./voices/female.mp3",
|
| 74 |
-
"Bard":"./voices/Bard_voice.mp3"
|
| 75 |
}
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
"
|
| 79 |
-
"
|
|
|
|
| 80 |
}
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
"
|
| 84 |
-
"
|
| 85 |
-
"
|
|
|
|
| 86 |
}
|
|
|
|
| 87 |
class Generate(BaseModel):
|
| 88 |
-
text:str
|
| 89 |
|
| 90 |
class Rooms(BaseModel):
|
| 91 |
-
rooms:List
|
| 92 |
-
room_of_interest:List
|
| 93 |
-
index_exit:int
|
| 94 |
-
possible_entities:List
|
| 95 |
-
logs:List
|
| 96 |
|
| 97 |
class Room_placements(BaseModel):
|
| 98 |
-
placements:dict
|
| 99 |
-
|
| 100 |
|
| 101 |
class Invoke(BaseModel):
|
| 102 |
-
system_prompt:str
|
| 103 |
-
message:str
|
| 104 |
|
| 105 |
-
def generate_text(messages: List[str], npc:str):
|
| 106 |
print(npc)
|
| 107 |
if npc in main_npcs:
|
| 108 |
-
system_prompt=main_npc_system_prompts[npc]
|
| 109 |
else:
|
| 110 |
-
system_prompt="you're a character in a video game. Play along."
|
| 111 |
-
print(system_prompt)
|
| 112 |
-
new_messages=[{"role": "user", "content": system_prompt}]
|
| 113 |
for index, message in enumerate(messages):
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
print(new_messages)
|
| 119 |
# Initialize the LLM
|
| 120 |
llm = ChatGoogleGenerativeAI(
|
|
@@ -122,14 +124,14 @@ def generate_text(messages: List[str], npc:str):
|
|
| 122 |
max_output_tokens=100,
|
| 123 |
temperature=1,
|
| 124 |
safety_settings={
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
)
|
| 131 |
-
if npc=="bard":
|
| 132 |
-
llm = llm.bind_tools([PlayLastMusic,CreateNewMusic,CreateLyrics])
|
| 133 |
|
| 134 |
llm_response = llm.invoke(new_messages)
|
| 135 |
print(llm_response)
|
|
@@ -144,18 +146,17 @@ app.add_middleware(
|
|
| 144 |
)
|
| 145 |
|
| 146 |
def inference_model(system_messsage, prompt):
|
| 147 |
-
|
| 148 |
-
new_messages=[{"role": "user", "content": system_messsage},{"role": "user", "content": prompt}]
|
| 149 |
llm = ChatGoogleGenerativeAI(
|
| 150 |
model="gemini-1.5-pro-latest",
|
| 151 |
max_output_tokens=100,
|
| 152 |
temperature=1,
|
| 153 |
safety_settings={
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
)
|
| 160 |
llm_response = llm.invoke(new_messages)
|
| 161 |
print(llm_response)
|
|
@@ -171,71 +172,70 @@ def inference(message: Message):
|
|
| 171 |
|
| 172 |
@app.post("/invoke_model")
|
| 173 |
def story(prompt: Invoke):
|
| 174 |
-
return inference_model(system_messsage=prompt.system_prompt,prompt=prompt.message)
|
| 175 |
-
|
| 176 |
@app.post("/generate_level")
|
| 177 |
def placement(input: Rooms):
|
| 178 |
print(input)
|
| 179 |
-
markdown_map=generate_map_markdown(input)
|
| 180 |
print(markdown_map)
|
| 181 |
-
answer={
|
| 182 |
-
"key":"value"
|
| 183 |
}
|
| 184 |
return answer
|
| 185 |
|
| 186 |
-
#Dummy function for now
|
| 187 |
-
def determine_vocie_from_npc(npc,genre):
|
| 188 |
if npc in main_npcs:
|
| 189 |
return main_npcs[npc]
|
| 190 |
else:
|
| 191 |
-
if genre =="Male":
|
| 192 |
-
"./voices/default_male.mp3"
|
| 193 |
-
if genre=="Female":
|
| 194 |
-
return"./voices/default_female.mp3"
|
| 195 |
else:
|
| 196 |
return "./voices/narator_out.wav"
|
| 197 |
-
|
| 198 |
-
|
|
|
|
| 199 |
if npc in main_npcs_elevenlabs:
|
| 200 |
return main_npcs_elevenlabs[npc]
|
| 201 |
else:
|
| 202 |
-
if genre =="Male":
|
| 203 |
-
"bIHbv24MWmeRgasZH58o"
|
| 204 |
-
if genre=="Female":
|
| 205 |
-
return"pFZP5JQG7iQjIQuC4Bku"
|
| 206 |
else:
|
| 207 |
-
return "TX3LPaxmHKxFdv7VOQHJ"
|
| 208 |
|
| 209 |
-
@app.post("/generate_wav")
|
| 210 |
async def generate_wav(message: VoiceMessage):
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
# Generator function to yield audio chunks
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
|
| 232 |
# Return the generated audio as a streaming response
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
# except Exception as e:
|
| 236 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
| 237 |
-
return 200
|
| 238 |
|
|
|
|
|
|
|
| 239 |
|
| 240 |
@app.get("/generate_voice_eleven", response_class=StreamingResponse)
|
| 241 |
@app.post("/generate_voice_eleven", response_class=StreamingResponse)
|
|
@@ -247,8 +247,8 @@ def generate_voice_eleven(message: VoiceMessage = None):
|
|
| 247 |
Last_message = message
|
| 248 |
|
| 249 |
def audio_stream():
|
| 250 |
-
this_voice_id=determine_elevenLav_voice_from_npc(message.npc, message.genre)
|
| 251 |
-
|
| 252 |
# Generate the audio stream from ElevenLabs
|
| 253 |
for chunk in Eleven_client.generate(text=message.input,
|
| 254 |
voice=Voice(
|
|
@@ -259,66 +259,66 @@ def generate_voice_eleven(message: VoiceMessage = None):
|
|
| 259 |
yield chunk
|
| 260 |
|
| 261 |
return StreamingResponse(audio_stream(), media_type="audio/mpeg")
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
#
|
| 265 |
-
#
|
| 266 |
-
#
|
| 267 |
-
#
|
| 268 |
-
#
|
| 269 |
-
#
|
|
|
|
| 270 |
#
|
| 271 |
-
#
|
| 272 |
-
#
|
| 273 |
-
#
|
| 274 |
-
#
|
| 275 |
-
#
|
| 276 |
-
#
|
| 277 |
-
#
|
| 278 |
-
#
|
| 279 |
-
#
|
| 280 |
-
#
|
| 281 |
-
#
|
| 282 |
-
#
|
| 283 |
-
#
|
| 284 |
-
#
|
| 285 |
-
#
|
| 286 |
-
#
|
| 287 |
#
|
| 288 |
-
#
|
|
|
|
| 289 |
@app.get("/generate_song")
|
| 290 |
async def generate_song():
|
| 291 |
-
text="""You are a bard in a video game singing the tales of a little girl in red hood."""
|
| 292 |
|
| 293 |
-
song_lyrics=generate_lyrics({
|
| 294 |
"prompt": f"{text}",
|
| 295 |
-
|
| 296 |
data = custom_generate_audio({
|
| 297 |
"prompt": song_lyrics['text'],
|
| 298 |
"tags": "male bard",
|
| 299 |
-
"title":"Everchangin_Quest_song",
|
| 300 |
-
"wait_audio":True,
|
| 301 |
-
|
| 302 |
})
|
| 303 |
-
infos=get_audio_information(f"{data[0]['id']},{data[1]['id']}")
|
| 304 |
return infos
|
| 305 |
|
| 306 |
-
|
| 307 |
-
#def Imagen(image:ImageGen=None):
|
| 308 |
-
#
|
| 309 |
-
#
|
| 310 |
#
|
| 311 |
-
#
|
| 312 |
-
#
|
| 313 |
-
#
|
| 314 |
-
#
|
| 315 |
#
|
| 316 |
-
|
| 317 |
-
#
|
| 318 |
|
| 319 |
def generate_map_markdown(data):
|
| 320 |
import numpy as np
|
| 321 |
-
|
| 322 |
# Define the room structure with walls and markers
|
| 323 |
def create_room(room_char):
|
| 324 |
return [
|
|
@@ -326,22 +326,22 @@ def generate_map_markdown(data):
|
|
| 326 |
f"║ {room_char} ║",
|
| 327 |
f"╚═══╝"
|
| 328 |
]
|
| 329 |
-
|
| 330 |
# Extract rooms and rooms of interest
|
| 331 |
rooms = [eval(room) for room in data["rooms"]]
|
| 332 |
rooms_of_interest = [eval(room) for room in data["room_of_interest"]]
|
| 333 |
-
|
| 334 |
# Determine grid size
|
| 335 |
min_x = min(room[0] for room in rooms)
|
| 336 |
max_x = max(room[0] for room in rooms)
|
| 337 |
min_y = min(room[1] for room in rooms)
|
| 338 |
max_y = max(room[1] for room in rooms)
|
| 339 |
-
|
| 340 |
# Create grid with empty spaces represented by a room-like structure
|
| 341 |
map_height = (max_y - min_y + 1) * 3
|
| 342 |
map_width = (max_x - min_x + 1) * 5
|
| 343 |
grid = np.full((map_height, map_width), " ")
|
| 344 |
-
|
| 345 |
# Populate grid with rooms and their characteristics
|
| 346 |
for i, room in enumerate(rooms):
|
| 347 |
x, y = room
|
|
@@ -356,9 +356,9 @@ def generate_map_markdown(data):
|
|
| 356 |
room_structure = create_room(room_char)
|
| 357 |
for j, row in enumerate(room_structure):
|
| 358 |
grid[y_offset + j, x_offset:x_offset + 5] = list(row)
|
| 359 |
-
|
| 360 |
# Convert grid to a string format suitable for display
|
| 361 |
markdown_map = "\n".join("".join(row) for row in grid)
|
| 362 |
-
|
| 363 |
# Return the map wrapped in triple backticks for proper display in markdown
|
| 364 |
return f"```\n{markdown_map}\n```"
|
|
|
|
| 3 |
from io import BytesIO
|
| 4 |
from langchain_core.pydantic_v1 import BaseModel, Field
|
| 5 |
from fastapi import FastAPI, HTTPException, Query, Request
|
| 6 |
+
from fastapi.responses import StreamingResponse, Response
|
| 7 |
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
|
| 9 |
from langchain.chains import LLMChain
|
| 10 |
from langchain.prompts import PromptTemplate
|
| 11 |
+
from TextGen.suno import custom_generate_audio, get_audio_information, generate_lyrics
|
| 12 |
+
# from TextGen.diffusion import generate_image
|
| 13 |
+
# from coqui import predict
|
| 14 |
from langchain_google_genai import (
|
| 15 |
ChatGoogleGenerativeAI,
|
| 16 |
HarmBlockThreshold,
|
|
|
|
| 22 |
from elevenlabs.client import ElevenLabs
|
| 23 |
from elevenlabs import Voice, VoiceSettings, stream
|
| 24 |
|
|
|
|
| 25 |
Eleven_client = ElevenLabs(
|
| 26 |
+
api_key=os.environ["ELEVEN_API_KEY"], # Defaults to ELEVEN_API_KEY
|
| 27 |
)
|
| 28 |
|
| 29 |
+
Last_message = None
|
| 30 |
|
|
|
|
| 31 |
class PlayLastMusic(BaseModel):
|
| 32 |
'''plays the lastest created music '''
|
| 33 |
Desicion: str = Field(
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
class CreateLyrics(BaseModel):
|
| 38 |
+
'''create some Lyrics for a new music'''
|
| 39 |
Desicion: str = Field(
|
| 40 |
..., description="Yes or No"
|
| 41 |
)
|
| 42 |
|
| 43 |
class CreateNewMusic(BaseModel):
|
| 44 |
+
'''create a new music with the Lyrics previously computed'''
|
| 45 |
Name: str = Field(
|
| 46 |
..., description="tags to describe the new music"
|
| 47 |
)
|
| 48 |
|
| 49 |
class SongRequest(BaseModel):
|
| 50 |
+
prompt: str | None = None
|
| 51 |
tags: List[str] | None = None
|
| 52 |
|
| 53 |
class Message(BaseModel):
|
| 54 |
+
npc: str | None = None
|
| 55 |
messages: List[str] | None = None
|
| 56 |
+
|
| 57 |
class ImageGen(BaseModel):
|
| 58 |
+
prompt: str | None = None
|
| 59 |
+
|
| 60 |
class VoiceMessage(BaseModel):
|
| 61 |
+
npc: str | None = None
|
| 62 |
input: str | None = None
|
| 63 |
language: str | None = "en"
|
| 64 |
+
genre: str | None = "Male"
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
song_base_api = os.environ["VERCEL_API"]
|
| 67 |
+
my_hf_token = os.environ["HF_TOKEN"]
|
| 68 |
|
| 69 |
+
tts_client = Client("Jofthomas/xtts", hf_token=my_hf_token)
|
| 70 |
|
| 71 |
+
main_npcs = {
|
| 72 |
+
"Blacksmith": "./voices/Blacksmith.mp3",
|
| 73 |
+
"Herbalist": "./voices/female.mp3",
|
| 74 |
+
"Bard": "./voices/Bard_voice.mp3"
|
| 75 |
}
|
| 76 |
+
|
| 77 |
+
main_npcs_elevenlabs = {
|
| 78 |
+
"Blacksmith": "yYdk7n49vTsUKiXxnosS",
|
| 79 |
+
"Herbalist": "143zSsxc4O5ifS97lPCa",
|
| 80 |
+
"Bard": "143zSsxc4O5ifS97lPCa"
|
| 81 |
}
|
| 82 |
+
|
| 83 |
+
main_npc_system_prompts = {
|
| 84 |
+
"Blacksmith": "You are a blacksmith in a video game",
|
| 85 |
+
"Herbalist": "You are an herbalist in a video game",
|
| 86 |
+
"Witch": "You are a witch in a video game. You are disguised as a potion seller in a small city where adventurers come to challenge the portal. You are selling some magic spells in a UI that the player only sees. Don't event too much lore and just follow the standard role of a merchant.",
|
| 87 |
+
"Bard": "You are a bard in a video game"
|
| 88 |
}
|
| 89 |
+
|
| 90 |
class Generate(BaseModel):
|
| 91 |
+
text: str
|
| 92 |
|
| 93 |
class Rooms(BaseModel):
|
| 94 |
+
rooms: List
|
| 95 |
+
room_of_interest: List
|
| 96 |
+
index_exit: int
|
| 97 |
+
possible_entities: List
|
| 98 |
+
logs: List
|
| 99 |
|
| 100 |
class Room_placements(BaseModel):
|
| 101 |
+
placements: dict
|
|
|
|
| 102 |
|
| 103 |
class Invoke(BaseModel):
|
| 104 |
+
system_prompt: str
|
| 105 |
+
message: str
|
| 106 |
|
| 107 |
+
def generate_text(messages: List[str], npc: str):
|
| 108 |
print(npc)
|
| 109 |
if npc in main_npcs:
|
| 110 |
+
system_prompt = main_npc_system_prompts[npc]
|
| 111 |
else:
|
| 112 |
+
system_prompt = "you're a character in a video game. Play along."
|
| 113 |
+
print(system_prompt)
|
| 114 |
+
new_messages = [{"role": "user", "content": system_prompt}]
|
| 115 |
for index, message in enumerate(messages):
|
| 116 |
+
if index % 2 == 0:
|
| 117 |
+
new_messages.append({"role": "user", "content": message})
|
| 118 |
+
else:
|
| 119 |
+
new_messages.append({"role": "assistant", "content": message})
|
| 120 |
print(new_messages)
|
| 121 |
# Initialize the LLM
|
| 122 |
llm = ChatGoogleGenerativeAI(
|
|
|
|
| 124 |
max_output_tokens=100,
|
| 125 |
temperature=1,
|
| 126 |
safety_settings={
|
| 127 |
+
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
| 128 |
+
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
| 129 |
+
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
| 130 |
+
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE
|
| 131 |
+
},
|
| 132 |
)
|
| 133 |
+
if npc == "bard":
|
| 134 |
+
llm = llm.bind_tools([PlayLastMusic, CreateNewMusic, CreateLyrics])
|
| 135 |
|
| 136 |
llm_response = llm.invoke(new_messages)
|
| 137 |
print(llm_response)
|
|
|
|
| 146 |
)
|
| 147 |
|
| 148 |
def inference_model(system_messsage, prompt):
|
| 149 |
+
new_messages = [{"role": "user", "content": system_messsage}, {"role": "user", "content": prompt}]
|
|
|
|
| 150 |
llm = ChatGoogleGenerativeAI(
|
| 151 |
model="gemini-1.5-pro-latest",
|
| 152 |
max_output_tokens=100,
|
| 153 |
temperature=1,
|
| 154 |
safety_settings={
|
| 155 |
+
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
| 156 |
+
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
| 157 |
+
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
| 158 |
+
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE
|
| 159 |
+
},
|
| 160 |
)
|
| 161 |
llm_response = llm.invoke(new_messages)
|
| 162 |
print(llm_response)
|
|
|
|
| 172 |
|
| 173 |
@app.post("/invoke_model")
|
| 174 |
def story(prompt: Invoke):
|
| 175 |
+
return inference_model(system_messsage=prompt.system_prompt, prompt=prompt.message)
|
| 176 |
+
|
| 177 |
@app.post("/generate_level")
|
| 178 |
def placement(input: Rooms):
|
| 179 |
print(input)
|
| 180 |
+
markdown_map = generate_map_markdown(input)
|
| 181 |
print(markdown_map)
|
| 182 |
+
answer = {
|
| 183 |
+
"key": "value"
|
| 184 |
}
|
| 185 |
return answer
|
| 186 |
|
| 187 |
+
# Dummy function for now
|
| 188 |
+
def determine_vocie_from_npc(npc, genre):
|
| 189 |
if npc in main_npcs:
|
| 190 |
return main_npcs[npc]
|
| 191 |
else:
|
| 192 |
+
if genre == "Male":
|
| 193 |
+
return "./voices/default_male.mp3"
|
| 194 |
+
if genre == "Female":
|
| 195 |
+
return "./voices/default_female.mp3"
|
| 196 |
else:
|
| 197 |
return "./voices/narator_out.wav"
|
| 198 |
+
|
| 199 |
+
# Dummy function for now
|
| 200 |
+
def determine_elevenLav_voice_from_npc(npc, genre):
|
| 201 |
if npc in main_npcs_elevenlabs:
|
| 202 |
return main_npcs_elevenlabs[npc]
|
| 203 |
else:
|
| 204 |
+
if genre == "Male":
|
| 205 |
+
return "bIHbv24MWmeRgasZH58o"
|
| 206 |
+
if genre == "Female":
|
| 207 |
+
return "pFZP5JQG7iQjIQuC4Bku"
|
| 208 |
else:
|
| 209 |
+
return "TX3LPaxmHKxFdv7VOQHJ"
|
| 210 |
|
| 211 |
+
@app.post("/generate_wav", response_class=StreamingResponse)
|
| 212 |
async def generate_wav(message: VoiceMessage):
|
| 213 |
+
try:
|
| 214 |
+
voice = determine_vocie_from_npc(message.npc, message.genre)
|
| 215 |
+
audio_file_pth = handle_file(voice)
|
| 216 |
+
|
| 217 |
# Generator function to yield audio chunks
|
| 218 |
+
async def audio_stream():
|
| 219 |
+
result = tts_client.predict(
|
| 220 |
+
prompt=message.input,
|
| 221 |
+
language=message.language,
|
| 222 |
+
audio_file_pth=audio_file_pth,
|
| 223 |
+
mic_file_path=None,
|
| 224 |
+
use_mic=False,
|
| 225 |
+
voice_cleanup=False,
|
| 226 |
+
no_lang_auto_detect=False,
|
| 227 |
+
agree=True,
|
| 228 |
+
api_name="/predict"
|
| 229 |
+
)
|
| 230 |
+
for sampling_rate, audio_chunk in result:
|
| 231 |
+
yield audio_chunk.tobytes()
|
| 232 |
+
await asyncio.sleep(0) # Yield control to the event loop
|
| 233 |
|
| 234 |
# Return the generated audio as a streaming response
|
| 235 |
+
return StreamingResponse(audio_stream(), media_type="audio/wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
+
except Exception as e:
|
| 238 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 239 |
|
| 240 |
@app.get("/generate_voice_eleven", response_class=StreamingResponse)
|
| 241 |
@app.post("/generate_voice_eleven", response_class=StreamingResponse)
|
|
|
|
| 247 |
Last_message = message
|
| 248 |
|
| 249 |
def audio_stream():
|
| 250 |
+
this_voice_id = determine_elevenLav_voice_from_npc(message.npc, message.genre)
|
| 251 |
+
|
| 252 |
# Generate the audio stream from ElevenLabs
|
| 253 |
for chunk in Eleven_client.generate(text=message.input,
|
| 254 |
voice=Voice(
|
|
|
|
| 259 |
yield chunk
|
| 260 |
|
| 261 |
return StreamingResponse(audio_stream(), media_type="audio/mpeg")
|
| 262 |
+
|
| 263 |
+
# @app.get("/generate_voice_coqui", response_class=StreamingResponse)
|
| 264 |
+
# @app.post("/generate_voice_coqui", response_class=StreamingResponse)
|
| 265 |
+
# def generate_voice_coqui(message: VoiceMessage = None):
|
| 266 |
+
# global Last_message
|
| 267 |
+
# if message is None:
|
| 268 |
+
# message = Last_message
|
| 269 |
+
# else:
|
| 270 |
+
# Last_message = message
|
| 271 |
#
|
| 272 |
+
# def audio_stream():
|
| 273 |
+
# voice = determine_vocie_from_npc(message.npc, message.genre)
|
| 274 |
+
# result = predict(
|
| 275 |
+
# prompt=message.input,
|
| 276 |
+
# language=message.language,
|
| 277 |
+
# audio_file_pth=voice,
|
| 278 |
+
# mic_file_path=None,
|
| 279 |
+
# use_mic=False,
|
| 280 |
+
# voice_cleanup=False,
|
| 281 |
+
# no_lang_auto_detect=False,
|
| 282 |
+
# agree=True,
|
| 283 |
+
# )
|
| 284 |
+
# # Generate the audio stream from ElevenLabs
|
| 285 |
+
# for chunk in result:
|
| 286 |
+
# print("received : ",chunk)
|
| 287 |
+
# yield chunk
|
| 288 |
#
|
| 289 |
+
# return StreamingResponse(audio_stream(), media_type="audio/mpeg")
|
| 290 |
+
|
| 291 |
@app.get("/generate_song")
|
| 292 |
async def generate_song():
|
| 293 |
+
text = """You are a bard in a video game singing the tales of a little girl in red hood."""
|
| 294 |
|
| 295 |
+
song_lyrics = generate_lyrics({
|
| 296 |
"prompt": f"{text}",
|
| 297 |
+
})
|
| 298 |
data = custom_generate_audio({
|
| 299 |
"prompt": song_lyrics['text'],
|
| 300 |
"tags": "male bard",
|
| 301 |
+
"title": "Everchangin_Quest_song",
|
| 302 |
+
"wait_audio": True,
|
|
|
|
| 303 |
})
|
| 304 |
+
infos = get_audio_information(f"{data[0]['id']},{data[1]['id']}")
|
| 305 |
return infos
|
| 306 |
|
| 307 |
+
# @app.post('/generate_image')
|
| 308 |
+
# def Imagen(image: ImageGen = None):
|
| 309 |
+
# pil_image = generate_image(image.prompt)
|
|
|
|
| 310 |
#
|
| 311 |
+
# # Convert the PIL Image to bytes
|
| 312 |
+
# img_byte_arr = BytesIO()
|
| 313 |
+
# pil_image.save(img_byte_arr, format='PNG')
|
| 314 |
+
# img_byte_arr = img_byte_arr.getvalue()
|
| 315 |
#
|
| 316 |
+
# # Return the image as a PNG response
|
| 317 |
+
# return Response(content=img_byte_arr, media_type="image/png")
|
| 318 |
|
| 319 |
def generate_map_markdown(data):
|
| 320 |
import numpy as np
|
| 321 |
+
|
| 322 |
# Define the room structure with walls and markers
|
| 323 |
def create_room(room_char):
|
| 324 |
return [
|
|
|
|
| 326 |
f"║ {room_char} ║",
|
| 327 |
f"╚═══╝"
|
| 328 |
]
|
| 329 |
+
|
| 330 |
# Extract rooms and rooms of interest
|
| 331 |
rooms = [eval(room) for room in data["rooms"]]
|
| 332 |
rooms_of_interest = [eval(room) for room in data["room_of_interest"]]
|
| 333 |
+
|
| 334 |
# Determine grid size
|
| 335 |
min_x = min(room[0] for room in rooms)
|
| 336 |
max_x = max(room[0] for room in rooms)
|
| 337 |
min_y = min(room[1] for room in rooms)
|
| 338 |
max_y = max(room[1] for room in rooms)
|
| 339 |
+
|
| 340 |
# Create grid with empty spaces represented by a room-like structure
|
| 341 |
map_height = (max_y - min_y + 1) * 3
|
| 342 |
map_width = (max_x - min_x + 1) * 5
|
| 343 |
grid = np.full((map_height, map_width), " ")
|
| 344 |
+
|
| 345 |
# Populate grid with rooms and their characteristics
|
| 346 |
for i, room in enumerate(rooms):
|
| 347 |
x, y = room
|
|
|
|
| 356 |
room_structure = create_room(room_char)
|
| 357 |
for j, row in enumerate(room_structure):
|
| 358 |
grid[y_offset + j, x_offset:x_offset + 5] = list(row)
|
| 359 |
+
|
| 360 |
# Convert grid to a string format suitable for display
|
| 361 |
markdown_map = "\n".join("".join(row) for row in grid)
|
| 362 |
+
|
| 363 |
# Return the map wrapped in triple backticks for proper display in markdown
|
| 364 |
return f"```\n{markdown_map}\n```"
|