aziz7751 commited on
Commit
509ad61
·
1 Parent(s): f4f39d4

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -31
app.py DELETED
@@ -1,31 +0,0 @@
1
- from transformers import MBartForConditionalGeneration, MBart50Tokenizer, MarianTokenizer, MarianMTModel
2
- import streamlit as st
3
-
4
- @st.cache(allow_output_mutation=True, suppress_st_warning=True)
5
-
6
- def download_model():
7
- model_name = f'Helsinki-NLP/opus-mt-en-ur'
8
- model = MarianMTModel.from_pretrained(model_name)
9
- tokenizer = MarianTokenizer.from_pretrained(model_name)
10
- return model, tokenizer
11
-
12
- st.title('English to Urdu Translator')
13
- st.markdown("[Developd By: Aziz Ahmad](https://www.linkedin.com/in/theazizahmad/)", unsafe_allow_html=True)
14
-
15
- text = st.text_area("Enter Text:", value='', height=None, max_chars=None, key=None)
16
- model, tokenizer = download_model()
17
-
18
- if st.button('Translate to Urdu'):
19
- if text == '':
20
- st.write('Please enter English text for translation')
21
- else:
22
-
23
- # Tokenize the text
24
- batch = tokenizer(text, return_tensors="pt", padding=True)
25
- # tokenized text maximum allowed size of 512
26
- batch["input_ids"] = batch["input_ids"][:, :512]
27
- batch["attention_mask"] = batch["attention_mask"][:, :512]
28
- translation_encoded = model.generate(**batch)
29
- translation = tokenizer.batch_decode(translation_encoded, skip_special_tokens=True)
30
- st.write('', str(translation).strip('][\''))
31
- else: pass