Delete app.py
Browse files
app.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
from transformers import MBartForConditionalGeneration, MBart50Tokenizer, MarianTokenizer, MarianMTModel
|
2 |
-
import streamlit as st
|
3 |
-
|
4 |
-
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
5 |
-
|
6 |
-
def download_model():
|
7 |
-
model_name = f'Helsinki-NLP/opus-mt-en-ur'
|
8 |
-
model = MarianMTModel.from_pretrained(model_name)
|
9 |
-
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
10 |
-
return model, tokenizer
|
11 |
-
|
12 |
-
st.title('English to Urdu Translator')
|
13 |
-
st.markdown("[Developd By: Aziz Ahmad](https://www.linkedin.com/in/theazizahmad/)", unsafe_allow_html=True)
|
14 |
-
|
15 |
-
text = st.text_area("Enter Text:", value='', height=None, max_chars=None, key=None)
|
16 |
-
model, tokenizer = download_model()
|
17 |
-
|
18 |
-
if st.button('Translate to Urdu'):
|
19 |
-
if text == '':
|
20 |
-
st.write('Please enter English text for translation')
|
21 |
-
else:
|
22 |
-
|
23 |
-
# Tokenize the text
|
24 |
-
batch = tokenizer(text, return_tensors="pt", padding=True)
|
25 |
-
# tokenized text maximum allowed size of 512
|
26 |
-
batch["input_ids"] = batch["input_ids"][:, :512]
|
27 |
-
batch["attention_mask"] = batch["attention_mask"][:, :512]
|
28 |
-
translation_encoded = model.generate(**batch)
|
29 |
-
translation = tokenizer.batch_decode(translation_encoded, skip_special_tokens=True)
|
30 |
-
st.write('', str(translation).strip('][\''))
|
31 |
-
else: pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|