Spaces:
Runtime error
Runtime error
Commit
·
5424223
1
Parent(s):
a872a6b
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"""
|
3 |
Created on Mon Jun 6 20:56:08 2022
|
4 |
|
5 |
-
@author:
|
6 |
"""
|
7 |
import os
|
8 |
os.system('pip install nltk')
|
@@ -15,19 +15,18 @@ nltk.download('stopwords')
|
|
15 |
nltk.download('wordnet')
|
16 |
nltk.download('omw-1.4')
|
17 |
|
18 |
-
|
19 |
import streamlit as st
|
20 |
import joblib
|
21 |
-
# preprocessing
|
22 |
import re
|
23 |
import string
|
24 |
import nltk
|
25 |
from nltk.corpus import stopwords
|
26 |
from nltk.stem import WordNetLemmatizer
|
27 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
28 |
-
# modeling
|
29 |
|
30 |
-
|
|
|
31 |
site_header = st.container()
|
32 |
business_context = st.container()
|
33 |
data_desc = st.container()
|
@@ -44,8 +43,7 @@ with site_header:
|
|
44 |
with tweet_input:
|
45 |
st.header('Is Your Text Considered Toxic?')
|
46 |
st.write("""*Please note that this prediction is based on how the model was trained, so it may not be an accurate representation.*""")
|
47 |
-
|
48 |
-
user_text = st.text_input('Enter Text', max_chars=280) # setting input as user_text
|
49 |
|
50 |
with model_results:
|
51 |
st.subheader('Prediction:')
|
@@ -64,7 +62,7 @@ with model_results:
|
|
64 |
for word in stopwords_removed:
|
65 |
lemmatized_output.append(lemmatizer.lemmatize(word))
|
66 |
|
67 |
-
# instantiating
|
68 |
tfidf = TfidfVectorizer(stop_words= stop_words, ngram_range=(1,2))
|
69 |
X_train = joblib.load(open('resources/X_train.pickel', 'rb'))
|
70 |
X_test = lemmatized_output
|
@@ -74,7 +72,7 @@ with model_results:
|
|
74 |
# loading in model
|
75 |
final_model = joblib.load(open('resources/final_bayes.pickel', 'rb'))
|
76 |
|
77 |
-
#
|
78 |
prediction = final_model.predict(X_test_count[0])
|
79 |
|
80 |
if prediction == 0:
|
|
|
2 |
"""
|
3 |
Created on Mon Jun 6 20:56:08 2022
|
4 |
|
5 |
+
@author: Aziz Baran Kurtuluş
|
6 |
"""
|
7 |
import os
|
8 |
os.system('pip install nltk')
|
|
|
15 |
nltk.download('wordnet')
|
16 |
nltk.download('omw-1.4')
|
17 |
|
18 |
+
|
19 |
import streamlit as st
|
20 |
import joblib
|
|
|
21 |
import re
|
22 |
import string
|
23 |
import nltk
|
24 |
from nltk.corpus import stopwords
|
25 |
from nltk.stem import WordNetLemmatizer
|
26 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
27 |
|
28 |
+
|
29 |
+
|
30 |
site_header = st.container()
|
31 |
business_context = st.container()
|
32 |
data_desc = st.container()
|
|
|
43 |
with tweet_input:
|
44 |
st.header('Is Your Text Considered Toxic?')
|
45 |
st.write("""*Please note that this prediction is based on how the model was trained, so it may not be an accurate representation.*""")
|
46 |
+
user_text = st.text_input('Enter Text', max_chars=280)
|
|
|
47 |
|
48 |
with model_results:
|
49 |
st.subheader('Prediction:')
|
|
|
62 |
for word in stopwords_removed:
|
63 |
lemmatized_output.append(lemmatizer.lemmatize(word))
|
64 |
|
65 |
+
# instantiating tfidf vectorizor
|
66 |
tfidf = TfidfVectorizer(stop_words= stop_words, ngram_range=(1,2))
|
67 |
X_train = joblib.load(open('resources/X_train.pickel', 'rb'))
|
68 |
X_test = lemmatized_output
|
|
|
72 |
# loading in model
|
73 |
final_model = joblib.load(open('resources/final_bayes.pickel', 'rb'))
|
74 |
|
75 |
+
# applying the model to make predictions
|
76 |
prediction = final_model.predict(X_test_count[0])
|
77 |
|
78 |
if prediction == 0:
|