azizbarank commited on
Commit
b47d6ba
·
1 Parent(s): 866e820

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -13
app.py CHANGED
@@ -1,7 +1,9 @@
1
- #import os
2
- #os.system('pip install nltk')
3
- #os.system('pip install sklearn')
4
 
 
 
5
  import nltk
6
 
7
  nltk.download('punkt')
@@ -11,11 +13,7 @@ nltk.download('omw-1.4')
11
 
12
  # importing relevant python packages
13
  import streamlit as st
14
- import pandas as pd
15
- import numpy as np
16
- import pickle
17
  import joblib
18
- from PIL import Image
19
  # preprocessing
20
  import re
21
  import string
@@ -24,9 +22,6 @@ from nltk.corpus import stopwords
24
  from nltk.stem import WordNetLemmatizer
25
  from sklearn.feature_extraction.text import TfidfVectorizer
26
  # modeling
27
- from sklearn import svm
28
- # sentiment analysis
29
-
30
 
31
  # creating page sections
32
  site_header = st.container()
@@ -67,13 +62,13 @@ with model_results:
67
 
68
  # instantiating count vectorizor
69
  tfidf = TfidfVectorizer(stop_words=stop_words)
70
- X_train = joblib.load(open('resources/X_train.pickel', 'rb'))
71
  X_test = lemmatized_output
72
  X_train_count = tfidf.fit_transform(X_train)
73
  X_test_count = tfidf.transform(X_test)
74
 
75
  # loading in model
76
- final_model = joblib.load(open('resources/final_bayes.pickle', 'rb'))
77
 
78
  # apply model to make predictions
79
  prediction = final_model.predict(X_test_count[0])
@@ -82,4 +77,4 @@ with model_results:
82
  st.subheader('**Not Hate Speech**')
83
  else:
84
  st.subheader('**Hate Speech**')
85
- st.text('')
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Mon Jun 6 20:56:08 2022
4
 
5
+ @author: User
6
+ """
7
  import nltk
8
 
9
  nltk.download('punkt')
 
13
 
14
  # importing relevant python packages
15
  import streamlit as st
 
 
 
16
  import joblib
 
17
  # preprocessing
18
  import re
19
  import string
 
22
  from nltk.stem import WordNetLemmatizer
23
  from sklearn.feature_extraction.text import TfidfVectorizer
24
  # modeling
 
 
 
25
 
26
  # creating page sections
27
  site_header = st.container()
 
62
 
63
  # instantiating count vectorizor
64
  tfidf = TfidfVectorizer(stop_words=stop_words)
65
+ X_train = joblib.load(open('X_train.pickel', 'rb'))
66
  X_test = lemmatized_output
67
  X_train_count = tfidf.fit_transform(X_train)
68
  X_test_count = tfidf.transform(X_test)
69
 
70
  # loading in model
71
+ final_model = joblib.load(open('final_bayes.pickle', 'rb'))
72
 
73
  # apply model to make predictions
74
  prediction = final_model.predict(X_test_count[0])
 
77
  st.subheader('**Not Hate Speech**')
78
  else:
79
  st.subheader('**Hate Speech**')
80
+ st.text('')