File size: 8,645 Bytes
df36fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NHITS, TimesNet, LSTM, TFT
from neuralforecast.losses.pytorch import HuberMQLoss
import time

# Paths for saving models
nhits_paths = {
    'D': './results/M4/NHITS/daily',
    'M': './results/M4/NHITS/monthly',
    'H': './results/M4/NHITS/hourly',
    'W': './results/M4/NHITS/weekly',
    'Y': './results/M4/NHITS/yearly'
}

timesnet_paths = {
    'D': './results/M4/TimesNet/daily',
    'M': './results/M4/TimesNet/monthly',
    'H': './results/M4/TimesNet/hourly',
    'W': './results/M4/TimesNet/weekly',
    'Y': './results/M4/TimesNet/yearly'
}

lstm_paths = {
    'D': './results/M4/LSTM/daily',
    'M': './results/M4/LSTM/monthly',
    'H': './results/M4/LSTM/hourly',
    'W': './results/M4/LSTM/weekly',
    'Y': './results/M4/LSTM/yearly'
}

tft_paths = {
    'D': './results/M4/TFT/daily',
    'M': './results/M4/TFT/monthly',
    'H': './results/M4/TFT/hourly',
    'W': './results/M4/TFT/weekly',
    'Y': './results/M4/TFT/yearly'
}

@st.cache_resource
def load_model(path, freq):
    nf = NeuralForecast.load(path=path)
    return nf

nhits_models = {freq: load_model(path, freq) for freq, path in nhits_paths.items()}
timesnet_models = {freq: load_model(path, freq) for freq, path in timesnet_paths.items()}
lstm_models = {freq: load_model(path, freq) for freq, path in lstm_paths.items()}
tft_models = {freq: load_model(path, freq) for freq, path in tft_paths.items()}

def generate_forecast(model, df):
    forecast_df = model.predict(df=df)
    return forecast_df

def determine_frequency(df):
    df['ds'] = pd.to_datetime(df['ds'])
    df = df.set_index('ds')
    freq = pd.infer_freq(df.index)
    return freq

def plot_forecasts(forecast_df, train_df, title):
    fig, ax = plt.subplots(1, 1, figsize=(20, 7))
    plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
    historical_col = 'y'
    forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
    lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
    hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
    if forecast_col is None:
        raise KeyError("No forecast column found in the data.")
    plot_df[[historical_col, forecast_col]].plot(ax=ax, linewidth=2, label=['Historical', 'Forecast'])
    if lo_col and hi_col:
        ax.fill_between(
            plot_df.index,
            plot_df[lo_col],
            plot_df[hi_col],
            color='blue',
            alpha=0.3,
            label='90% Confidence Interval'
        )
    ax.set_title(title, fontsize=22)
    ax.set_ylabel('Value', fontsize=20)
    ax.set_xlabel('Timestamp [t]', fontsize=20)
    ax.legend(prop={'size': 15})
    ax.grid()
    st.pyplot(fig)

def select_model_based_on_frequency(freq, nhits_models, timesnet_models, lstm_models, tft_models):
    if freq == 'D':
        return nhits_models['D'], timesnet_models['D'], lstm_models['D'], tft_models['D']
    elif freq == 'M':
        return nhits_models['M'], timesnet_models['M'], lstm_models['M'], tft_models['M']
    elif freq == 'H':
        return nhits_models['H'], timesnet_models['H'], lstm_models['H'], tft_models['H']
    elif freq in ['W', 'W-SUN']:
        return nhits_models['W'], timesnet_models['W'], lstm_models['W'], tft_models['W']
    elif freq in ['Y', 'Y-DEC']:
        return nhits_models['Y'], timesnet_models['Y'], lstm_models['Y'], tft_models['Y']
    else:
        raise ValueError(f"Unsupported frequency: {freq}")

def select_model(horizon, model_type, max_steps=200):
    if model_type == 'NHITS':
        return NHITS(input_size=5 * horizon,
                     h=horizon,
                     max_steps=max_steps,
                     stack_types=3*['identity'],
                     n_blocks=3*[1],
                     mlp_units=[[256, 256] for _ in range(3)],
                     n_pool_kernel_size=3*[1],
                     batch_size=32,
                     scaler_type='standard',
                     n_freq_downsample=[12, 4, 1],
                     loss=HuberMQLoss(level=[90]))
    elif model_type == 'TimesNet':
        return TimesNet(h=horizon,
                        input_size=horizon * 5,
                        hidden_size=16,
                        conv_hidden_size=32,
                        loss=HuberMQLoss(level=[90]),
                        scaler_type='standard',
                        learning_rate=1e-3,
                        max_steps=max_steps,
                        val_check_steps=200,
                        valid_batch_size=64,
                        windows_batch_size=128,
                        inference_windows_batch_size=512)
    elif model_type == 'LSTM':
        return LSTM(h=horizon,
                    input_size=horizon * 5,
                    loss=HuberMQLoss(level=[90]),
                    scaler_type='standard',
                    encoder_n_layers=2,
                    encoder_hidden_size=64,
                    context_size=10,
                    decoder_hidden_size=64,
                    decoder_layers=2,
                    max_steps=max_steps)
    elif model_type == 'TFT':
        return TFT(h=horizon,
                   input_size=horizon,
                   hidden_size=16,
                   loss=HuberMQLoss(level=[90]),
                   learning_rate=0.005,
                   scaler_type='standard',
                   windows_batch_size=128,
                   max_steps=max_steps,
                   val_check_steps=200,
                   valid_batch_size=64,
                   enable_progress_bar=True)
    else:
        raise ValueError(f"Unsupported model type: {model_type}")

def forecast_time_series(df, model_type, freq, horizon, max_steps=200):
    start_time = time.time()  # Start timing
    if freq:
        df['ds'] = pd.date_range(start='1970-01-01', periods=len(df), freq=freq)
    else:
        freq = determine_frequency(df)
        st.write(f"Determined frequency: {freq}")
    df['ds'] = pd.to_datetime(df['ds'], errors='coerce')
    df = df.dropna(subset=['ds'])
    model = select_model(horizon, model_type, max_steps)
    forecast_results = {}
    st.write(f"Generating forecast using {model_type} model...")
    forecast_results[model_type] = generate_forecast(model, df, freq)

    for model_name, forecast_df in forecast_results.items():
        plot_forecasts(forecast_df, df, f'{model_name} Forecast Comparison')
        
    end_time = time.time()  # End timing
    time_taken = end_time - start_time
    st.success(f"Time taken for {model_type} forecast: {time_taken:.2f} seconds")

# Streamlit App
st.title("Dynamic and Automatic Time Series Forecasting")

# Upload dataset
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
    df = pd.read_csv(uploaded_file)
else:
    st.warning("Using default data")
    df = AirPassengersDF.copy()

# Model selection and forecasting
st.subheader("Transfer Learning Forecasting")
model_choice = st.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
horizon = st.slider("Forecast horizon", 1, 100, 10)

# Determine frequency of data
frequency = determine_frequency(df)
st.write(f"Detected frequency: {frequency}")

# Load pre-trained models
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
forecast_results = {}

start_time = time.time()  # Start timing
if model_choice == "NHITS":
    forecast_results['NHITS'] = generate_forecast(nhits_model, df)
elif model_choice == "TimesNet":
    forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
elif model_choice == "LSTM":
    forecast_results['LSTM'] = generate_forecast(lstm_model, df)
elif model_choice == "TFT":
    forecast_results['TFT'] = generate_forecast(tft_model, df)

for model_name, forecast_df in forecast_results.items():
    plot_forecasts(forecast_df, df, f'{model_name} Forecast')
    
end_time = time.time()  # End timing
time_taken = end_time - start_time
st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")

# Dynamic forecasting
st.subheader("Dynamic Forecasting")
dynamic_model_choice = st.selectbox("Select model for dynamic forecasting", ["NHITS", "TimesNet", "LSTM", "TFT"], key="dynamic_model_choice")
dynamic_horizon = st.slider("Forecast horizon for dynamic forecasting", 1, 100, 10, key="dynamic_horizon")
forecast_time_series(df, dynamic_model_choice, frequency, dynamic_horizon)