Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -187,6 +187,7 @@ def load_default():
|
|
187 |
def transfer_learning_forecasting():
|
188 |
st.title("Transfer Learning Forecasting")
|
189 |
|
|
|
190 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
191 |
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
192 |
if uploaded_file:
|
@@ -200,11 +201,10 @@ def transfer_learning_forecasting():
|
|
200 |
columns = df.columns.tolist() # Convert Index to list
|
201 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
202 |
y_col = st.selectbox("Select Target column", options=columns, index=columns.index('y') if 'y' in columns else 1)
|
203 |
-
unique_id_col = st.text_input("Unique ID column (default: '1')", value="1")
|
204 |
|
205 |
st.session_state.ds_col = ds_col
|
206 |
st.session_state.y_col = y_col
|
207 |
-
st.session_state.unique_id_col = unique_id_col
|
208 |
|
209 |
# Model selection and forecasting
|
210 |
st.sidebar.subheader("Model Selection and Forecasting")
|
@@ -212,6 +212,7 @@ def transfer_learning_forecasting():
|
|
212 |
horizon = st.sidebar.number_input("Forecast horizon", value=18)
|
213 |
|
214 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
|
|
215 |
st.session_state.df = df
|
216 |
|
217 |
# Determine frequency of data
|
@@ -255,11 +256,11 @@ def dynamic_forecasting():
|
|
255 |
columns = df.columns.tolist() # Convert Index to list
|
256 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
257 |
y_col = st.selectbox("Select Target column", options=columns, index=columns.index('y') if 'y' in columns else 1)
|
258 |
-
unique_id_col = st.text_input("Unique ID column (default: '1')", value="1")
|
259 |
|
|
|
260 |
st.session_state.ds_col = ds_col
|
261 |
st.session_state.y_col = y_col
|
262 |
-
st.session_state.unique_id_col = unique_id_col
|
263 |
|
264 |
# Dynamic forecasting
|
265 |
st.sidebar.subheader("Dynamic Model Selection and Forecasting")
|
|
|
187 |
def transfer_learning_forecasting():
|
188 |
st.title("Transfer Learning Forecasting")
|
189 |
|
190 |
+
nhits_model, timesnet_model, lstm_model, tft_model = load_all_models()
|
191 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
192 |
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
193 |
if uploaded_file:
|
|
|
201 |
columns = df.columns.tolist() # Convert Index to list
|
202 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
203 |
y_col = st.selectbox("Select Target column", options=columns, index=columns.index('y') if 'y' in columns else 1)
|
204 |
+
# unique_id_col = st.text_input("Unique ID column (default: '1')", value="1")
|
205 |
|
206 |
st.session_state.ds_col = ds_col
|
207 |
st.session_state.y_col = y_col
|
|
|
208 |
|
209 |
# Model selection and forecasting
|
210 |
st.sidebar.subheader("Model Selection and Forecasting")
|
|
|
212 |
horizon = st.sidebar.number_input("Forecast horizon", value=18)
|
213 |
|
214 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
215 |
+
df['unique_id']=1
|
216 |
st.session_state.df = df
|
217 |
|
218 |
# Determine frequency of data
|
|
|
256 |
columns = df.columns.tolist() # Convert Index to list
|
257 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
258 |
y_col = st.selectbox("Select Target column", options=columns, index=columns.index('y') if 'y' in columns else 1)
|
259 |
+
# unique_id_col = st.text_input("Unique ID column (default: '1')", value="1")
|
260 |
|
261 |
+
df['unique_id']=1
|
262 |
st.session_state.ds_col = ds_col
|
263 |
st.session_state.y_col = y_col
|
|
|
264 |
|
265 |
# Dynamic forecasting
|
266 |
st.sidebar.subheader("Dynamic Model Selection and Forecasting")
|