Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -226,14 +226,18 @@ def transfer_learning_forecasting():
|
|
226 |
frequency = determine_frequency(df)
|
227 |
st.sidebar.write(f"Detected frequency: {frequency}")
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
237 |
|
238 |
# Load pre-trained models
|
239 |
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
|
|
|
226 |
frequency = determine_frequency(df)
|
227 |
st.sidebar.write(f"Detected frequency: {frequency}")
|
228 |
|
229 |
+
tab_insample = st.tabs(
|
230 |
+
["Input data"]
|
231 |
+
)
|
232 |
+
with tab_insample:
|
233 |
+
df_grid = df.drop(columns="unique_id")
|
234 |
+
grid_table = AgGrid(
|
235 |
+
df_grid,
|
236 |
+
editable=False,
|
237 |
+
# theme="streamlit",
|
238 |
+
fit_columns_on_grid_load=True,
|
239 |
+
height=360,
|
240 |
+
)
|
241 |
|
242 |
# Load pre-trained models
|
243 |
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
|