azrai99 commited on
Commit
3ef6a0f
·
verified ·
1 Parent(s): f0efcd9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -24
app.py CHANGED
@@ -616,40 +616,38 @@ def timegpt_anom():
616
  # Convert the Plotly figure to a Matplotlib figure if needed
617
  # Note: You may need to handle this conversion depending on your specific use case
618
  # For now, this example assumes that you are using a Matplotlib figure
619
- fig = nixtla_client.plot(df, forecast_df, level=[90], engine='matplotlib')
620
  st.pyplot(fig)
621
  elif plot_type == "Plotly":
622
  # Plotly figure directly
623
- fig = nixtla_client.plot(df, forecast_df, level=[90], engine='plotly')
624
  st.plotly_chart(fig)
625
 
626
  end_time = time.time() # End timing
627
  time_taken = end_time - start_time
628
  st.success(f"Time taken for TimeGPT forecast: {time_taken:.2f} seconds")
629
 
630
- if 'forecast_df' in st.session_state:
631
- forecast_df = st.session_state.forecast_df
 
 
 
 
 
 
 
 
 
 
 
632
 
633
- st.markdown('You can download Input and Forecast Data below')
634
- tab_insample, tab_forecast = st.tabs(
635
- ["Input data", "Forecast"]
636
- )
637
-
638
- with tab_insample:
639
- df_grid = df.drop(columns="unique_id")
640
- st.write(df_grid)
641
- # grid_table = AgGrid(
642
- # df_grid,
643
- # theme="alpine",
644
- # )
645
-
646
- with tab_forecast:
647
- df_grid = forecast_df
648
- st.write(df_grid)
649
- # grid_table = AgGrid(
650
- # df_grid,
651
- # theme="alpine",
652
- # )
653
 
654
 
655
 
 
616
  # Convert the Plotly figure to a Matplotlib figure if needed
617
  # Note: You may need to handle this conversion depending on your specific use case
618
  # For now, this example assumes that you are using a Matplotlib figure
619
+ fig = nixtla_client.plot(df, anom_df, level=[90], engine='matplotlib')
620
  st.pyplot(fig)
621
  elif plot_type == "Plotly":
622
  # Plotly figure directly
623
+ fig = nixtla_client.plot(df, anom_df, level=[90], engine='plotly')
624
  st.plotly_chart(fig)
625
 
626
  end_time = time.time() # End timing
627
  time_taken = end_time - start_time
628
  st.success(f"Time taken for TimeGPT forecast: {time_taken:.2f} seconds")
629
 
630
+
631
+ st.markdown('You can download Input and Forecast Data below')
632
+ tab_insample, tab_forecast = st.tabs(
633
+ ["Input data", "Forecast"]
634
+ )
635
+
636
+ with tab_insample:
637
+ df_grid = df.drop(columns="unique_id")
638
+ st.write(df_grid)
639
+ # grid_table = AgGrid(
640
+ # df_grid,
641
+ # theme="alpine",
642
+ # )
643
 
644
+ with tab_forecast:
645
+ df_grid = anom_df
646
+ st.write(df_grid)
647
+ # grid_table = AgGrid(
648
+ # df_grid,
649
+ # theme="alpine",
650
+ # )
 
 
 
 
 
 
 
 
 
 
 
 
 
651
 
652
 
653