azrai99 commited on
Commit
411b7b7
·
verified ·
1 Parent(s): d3eff15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -31
app.py CHANGED
@@ -237,21 +237,14 @@ def transfer_learning_forecasting():
237
  df = st.session_state.df
238
  else:
239
  df = st.session_state.df
240
-
241
-
242
- columns = df.columns.tolist() # Convert Index to list
243
- opt = []
244
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
245
- if 'ds' in columns and 'unique_id' in columns:
246
- columns.pop(columns.index('ds'))
247
- columns.pop(columns.index('unique_id'))
248
- opt = columns
249
- if 'ds' in opt:
250
- opt.remove('ds')
251
- y_col = st.selectbox("Select Target column", options=opt, index=0)
252
 
253
- st.session_state.ds_col = ds_col
254
- st.session_state.y_col = y_col
255
 
256
  # Model selection and forecasting
257
  st.sidebar.subheader("Model Selection and Forecasting")
@@ -327,13 +320,26 @@ def dynamic_forecasting():
327
  """)
328
 
329
  with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
330
- uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
331
- if uploaded_file:
332
- df = pd.read_csv(uploaded_file)
333
- st.session_state.df = df
 
 
 
 
 
334
  else:
335
- df = load_default()
336
- st.session_state.df = df
 
 
 
 
 
 
 
 
337
 
338
  columns = df.columns.tolist() # Convert Index to list
339
  opt = []
@@ -374,13 +380,26 @@ def timegpt_fcst():
374
  Instant time series forecasting and visualization by using the TimeGPT API provided by Nixtla.
375
  """)
376
  with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
377
- uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
378
- if uploaded_file:
379
- df = pd.read_csv(uploaded_file)
380
- st.session_state.df = df
 
 
 
 
 
381
  else:
382
- df = load_default()
383
- st.session_state.df = df
 
 
 
 
 
 
 
 
384
 
385
  columns = df.columns.tolist() # Convert Index to list
386
  opt = []
@@ -436,13 +455,26 @@ def timegpt_anom():
436
  Instant time series anomaly detection and visualization by using the TimeGPT API provided by Nixtla.
437
  """)
438
  with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
439
- uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
440
- if uploaded_file:
441
- df = pd.read_csv(uploaded_file)
442
- st.session_state.df = df
 
 
 
 
 
443
  else:
444
- df = load_default()
445
- st.session_state.df = df
 
 
 
 
 
 
 
 
446
 
447
  columns = df.columns.tolist() # Convert Index to list
448
  opt = []
 
237
  df = st.session_state.df
238
  else:
239
  df = st.session_state.df
240
+
241
+ columns = st.session_state.df.columns.tolist()
 
 
242
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
243
+ target_columns = [col for col in columns if col != ds_col]
244
+ y_col = st.selectbox("Select Target column", options=target_columns, index=0)
 
 
 
 
 
245
 
246
+ st.session_state.ds_col = ds_col
247
+ st.session_state.y_col = y_col
248
 
249
  # Model selection and forecasting
250
  st.sidebar.subheader("Model Selection and Forecasting")
 
320
  """)
321
 
322
  with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
323
+ if 'uploaded_file' not in st.session_state:
324
+ uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
325
+ if uploaded_file:
326
+ df = pd.read_csv(uploaded_file)
327
+ st.session_state.df = df
328
+ st.session_state.uploaded_file = uploaded_file
329
+ else:
330
+ df = load_default()
331
+ st.session_state.df = df
332
  else:
333
+ if st.checkbox("Upload a new file (CSV)"):
334
+ uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
335
+ if uploaded_file:
336
+ df = pd.read_csv(uploaded_file)
337
+ st.session_state.df = df
338
+ st.session_state.uploaded_file = uploaded_file
339
+ else:
340
+ df = st.session_state.df
341
+ else:
342
+ df = st.session_state.df
343
 
344
  columns = df.columns.tolist() # Convert Index to list
345
  opt = []
 
380
  Instant time series forecasting and visualization by using the TimeGPT API provided by Nixtla.
381
  """)
382
  with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
383
+ if 'uploaded_file' not in st.session_state:
384
+ uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
385
+ if uploaded_file:
386
+ df = pd.read_csv(uploaded_file)
387
+ st.session_state.df = df
388
+ st.session_state.uploaded_file = uploaded_file
389
+ else:
390
+ df = load_default()
391
+ st.session_state.df = df
392
  else:
393
+ if st.checkbox("Upload a new file (CSV)"):
394
+ uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
395
+ if uploaded_file:
396
+ df = pd.read_csv(uploaded_file)
397
+ st.session_state.df = df
398
+ st.session_state.uploaded_file = uploaded_file
399
+ else:
400
+ df = st.session_state.df
401
+ else:
402
+ df = st.session_state.df
403
 
404
  columns = df.columns.tolist() # Convert Index to list
405
  opt = []
 
455
  Instant time series anomaly detection and visualization by using the TimeGPT API provided by Nixtla.
456
  """)
457
  with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
458
+ if 'uploaded_file' not in st.session_state:
459
+ uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
460
+ if uploaded_file:
461
+ df = pd.read_csv(uploaded_file)
462
+ st.session_state.df = df
463
+ st.session_state.uploaded_file = uploaded_file
464
+ else:
465
+ df = load_default()
466
+ st.session_state.df = df
467
  else:
468
+ if st.checkbox("Upload a new file (CSV)"):
469
+ uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
470
+ if uploaded_file:
471
+ df = pd.read_csv(uploaded_file)
472
+ st.session_state.df = df
473
+ st.session_state.uploaded_file = uploaded_file
474
+ else:
475
+ df = st.session_state.df
476
+ else:
477
+ df = st.session_state.df
478
 
479
  columns = df.columns.tolist() # Convert Index to list
480
  opt = []