Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -237,21 +237,14 @@ def transfer_learning_forecasting():
|
|
237 |
df = st.session_state.df
|
238 |
else:
|
239 |
df = st.session_state.df
|
240 |
-
|
241 |
-
|
242 |
-
columns = df.columns.tolist() # Convert Index to list
|
243 |
-
opt = []
|
244 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
245 |
-
|
246 |
-
|
247 |
-
columns.pop(columns.index('unique_id'))
|
248 |
-
opt = columns
|
249 |
-
if 'ds' in opt:
|
250 |
-
opt.remove('ds')
|
251 |
-
y_col = st.selectbox("Select Target column", options=opt, index=0)
|
252 |
|
253 |
-
|
254 |
-
|
255 |
|
256 |
# Model selection and forecasting
|
257 |
st.sidebar.subheader("Model Selection and Forecasting")
|
@@ -327,13 +320,26 @@ def dynamic_forecasting():
|
|
327 |
""")
|
328 |
|
329 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
330 |
-
uploaded_file
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
334 |
else:
|
335 |
-
|
336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
columns = df.columns.tolist() # Convert Index to list
|
339 |
opt = []
|
@@ -374,13 +380,26 @@ def timegpt_fcst():
|
|
374 |
Instant time series forecasting and visualization by using the TimeGPT API provided by Nixtla.
|
375 |
""")
|
376 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
377 |
-
uploaded_file
|
378 |
-
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
381 |
else:
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
columns = df.columns.tolist() # Convert Index to list
|
386 |
opt = []
|
@@ -436,13 +455,26 @@ def timegpt_anom():
|
|
436 |
Instant time series anomaly detection and visualization by using the TimeGPT API provided by Nixtla.
|
437 |
""")
|
438 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
439 |
-
uploaded_file
|
440 |
-
|
441 |
-
|
442 |
-
|
|
|
|
|
|
|
|
|
|
|
443 |
else:
|
444 |
-
|
445 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
|
447 |
columns = df.columns.tolist() # Convert Index to list
|
448 |
opt = []
|
|
|
237 |
df = st.session_state.df
|
238 |
else:
|
239 |
df = st.session_state.df
|
240 |
+
|
241 |
+
columns = st.session_state.df.columns.tolist()
|
|
|
|
|
242 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
243 |
+
target_columns = [col for col in columns if col != ds_col]
|
244 |
+
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
+
st.session_state.ds_col = ds_col
|
247 |
+
st.session_state.y_col = y_col
|
248 |
|
249 |
# Model selection and forecasting
|
250 |
st.sidebar.subheader("Model Selection and Forecasting")
|
|
|
320 |
""")
|
321 |
|
322 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
323 |
+
if 'uploaded_file' not in st.session_state:
|
324 |
+
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
325 |
+
if uploaded_file:
|
326 |
+
df = pd.read_csv(uploaded_file)
|
327 |
+
st.session_state.df = df
|
328 |
+
st.session_state.uploaded_file = uploaded_file
|
329 |
+
else:
|
330 |
+
df = load_default()
|
331 |
+
st.session_state.df = df
|
332 |
else:
|
333 |
+
if st.checkbox("Upload a new file (CSV)"):
|
334 |
+
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
335 |
+
if uploaded_file:
|
336 |
+
df = pd.read_csv(uploaded_file)
|
337 |
+
st.session_state.df = df
|
338 |
+
st.session_state.uploaded_file = uploaded_file
|
339 |
+
else:
|
340 |
+
df = st.session_state.df
|
341 |
+
else:
|
342 |
+
df = st.session_state.df
|
343 |
|
344 |
columns = df.columns.tolist() # Convert Index to list
|
345 |
opt = []
|
|
|
380 |
Instant time series forecasting and visualization by using the TimeGPT API provided by Nixtla.
|
381 |
""")
|
382 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
383 |
+
if 'uploaded_file' not in st.session_state:
|
384 |
+
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
385 |
+
if uploaded_file:
|
386 |
+
df = pd.read_csv(uploaded_file)
|
387 |
+
st.session_state.df = df
|
388 |
+
st.session_state.uploaded_file = uploaded_file
|
389 |
+
else:
|
390 |
+
df = load_default()
|
391 |
+
st.session_state.df = df
|
392 |
else:
|
393 |
+
if st.checkbox("Upload a new file (CSV)"):
|
394 |
+
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
395 |
+
if uploaded_file:
|
396 |
+
df = pd.read_csv(uploaded_file)
|
397 |
+
st.session_state.df = df
|
398 |
+
st.session_state.uploaded_file = uploaded_file
|
399 |
+
else:
|
400 |
+
df = st.session_state.df
|
401 |
+
else:
|
402 |
+
df = st.session_state.df
|
403 |
|
404 |
columns = df.columns.tolist() # Convert Index to list
|
405 |
opt = []
|
|
|
455 |
Instant time series anomaly detection and visualization by using the TimeGPT API provided by Nixtla.
|
456 |
""")
|
457 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
458 |
+
if 'uploaded_file' not in st.session_state:
|
459 |
+
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
460 |
+
if uploaded_file:
|
461 |
+
df = pd.read_csv(uploaded_file)
|
462 |
+
st.session_state.df = df
|
463 |
+
st.session_state.uploaded_file = uploaded_file
|
464 |
+
else:
|
465 |
+
df = load_default()
|
466 |
+
st.session_state.df = df
|
467 |
else:
|
468 |
+
if st.checkbox("Upload a new file (CSV)"):
|
469 |
+
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
470 |
+
if uploaded_file:
|
471 |
+
df = pd.read_csv(uploaded_file)
|
472 |
+
st.session_state.df = df
|
473 |
+
st.session_state.uploaded_file = uploaded_file
|
474 |
+
else:
|
475 |
+
df = st.session_state.df
|
476 |
+
else:
|
477 |
+
df = st.session_state.df
|
478 |
|
479 |
columns = df.columns.tolist() # Convert Index to list
|
480 |
opt = []
|