Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -248,50 +248,49 @@ def transfer_learning_forecasting():
|
|
248 |
frequency = determine_frequency(df)
|
249 |
st.sidebar.write(f"Detected frequency: {frequency}")
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
["Input data", "Forecast"]
|
255 |
)
|
256 |
-
with tab_insample:
|
257 |
-
df_grid = df.drop(columns="unique_id")
|
258 |
-
st.write(df_grid)
|
259 |
-
# grid_table = AgGrid(
|
260 |
-
# df_grid,
|
261 |
-
# theme="alpine",
|
262 |
-
# )
|
263 |
-
|
264 |
-
with tab_forecast:
|
265 |
-
df_grid = df.drop(columns="unique_id")
|
266 |
-
# grid_table = AgGrid(
|
267 |
-
# df_grid,
|
268 |
-
# theme="alpine",
|
269 |
-
# )
|
270 |
-
|
271 |
-
with col2:
|
272 |
-
# Load pre-trained models
|
273 |
-
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
|
274 |
-
forecast_results = {}
|
275 |
-
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
end_time = time.time() # End timing
|
293 |
-
time_taken = end_time - start_time
|
294 |
-
st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")
|
295 |
|
296 |
|
297 |
def dynamic_forecasting():
|
|
|
248 |
frequency = determine_frequency(df)
|
249 |
st.sidebar.write(f"Detected frequency: {frequency}")
|
250 |
|
251 |
+
|
252 |
+
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
|
253 |
+
forecast_results = {}
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
if st.sidebar.button("Submit"):
|
258 |
+
start_time = time.time() # Start timing
|
259 |
+
if model_choice == "NHITS":
|
260 |
+
forecast_results['NHITS'] = generate_forecast(nhits_model, df)
|
261 |
+
elif model_choice == "TimesNet":
|
262 |
+
forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
|
263 |
+
elif model_choice == "LSTM":
|
264 |
+
forecast_results['LSTM'] = generate_forecast(lstm_model, df)
|
265 |
+
elif model_choice == "TFT":
|
266 |
+
forecast_results['TFT'] = generate_forecast(tft_model, df)
|
267 |
+
|
268 |
+
for model_name, forecast_df in forecast_results.items():
|
269 |
+
plot_forecasts(forecast_df, df, f'{model_name} Forecast for {y_col}')
|
270 |
+
|
271 |
+
end_time = time.time() # End timing
|
272 |
+
time_taken = end_time - start_time
|
273 |
+
st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")
|
274 |
+
|
275 |
+
tab_insample, tab_forecast = st.tabs(
|
276 |
["Input data", "Forecast"]
|
277 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
+
with tab_insample:
|
280 |
+
df_grid = df.drop(columns="unique_id")
|
281 |
+
st.write(df_grid)
|
282 |
+
# grid_table = AgGrid(
|
283 |
+
# df_grid,
|
284 |
+
# theme="alpine",
|
285 |
+
# )
|
286 |
+
|
287 |
+
with tab_forecast:
|
288 |
+
df_grid = forecast_results[model_choice].drop(columns="unique_id")
|
289 |
+
st.write(df_grid)
|
290 |
+
# grid_table = AgGrid(
|
291 |
+
# df_grid,
|
292 |
+
# theme="alpine",
|
293 |
+
# )
|
|
|
|
|
|
|
294 |
|
295 |
|
296 |
def dynamic_forecasting():
|