azrai99 commited on
Commit
7c0f996
·
verified ·
1 Parent(s): 6355b2b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -47
app.py CHANGED
@@ -209,7 +209,7 @@ def transfer_learning_forecasting():
209
  with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
210
  uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
211
  if uploaded_file:
212
- df = pd.read_csv(uploaded_file)
213
  st.session_state.df = df
214
  else:
215
  df = load_default()
@@ -377,53 +377,13 @@ def timegpt_fcst():
377
  )
378
  st.write(forecast_df)
379
 
380
- # nixtla_client.plot(
381
- # forecast_df,
382
- # level=[90],
383
- # max_insample_length=365
384
- # )
385
-
386
- # def timegpt_fcst():
387
- # nixtla_token = os.environ.get("NIXTLA_API_KEY")
388
- # nixtla_client = NixtlaClient(api_key=nixtla_token)
389
-
390
- # st.title("TimeGPT Forecasting")
391
- # with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
392
- # uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
393
- # if uploaded_file:
394
- # df = pd.read_csv(uploaded_file)
395
- # st.session_state.df = df
396
- # else:
397
- # df = load_default()
398
- # st.session_state.df = df
399
-
400
- # columns = df.columns.tolist()
401
- # st.write("Columns in the uploaded dataset:", columns) # Debug statement
402
-
403
- # ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
404
- # y_col = st.selectbox("Select Target column", options=[col for col in columns if col != ds_col], index=0)
405
-
406
- # df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
407
- # st.write("Renamed DataFrame columns:", df.columns) # Debug statement
408
-
409
- # id_col = 'ts_test'
410
- # df['unique_id'] = id_col
411
- # freq = determine_frequency(df)
412
-
413
- # st.write("DataFrame after renaming and adding 'unique_id':", df.head()) # Debug statement
414
-
415
- # forecast_df = nixtla_client.forecast(
416
- # df=df,
417
- # h=7,
418
- # freq=freq,
419
- # level=[90]
420
- # )
421
 
422
- # nixtla_client.plot(
423
- # forecast_df,
424
- # level=[90],
425
- # max_insample_length=365
426
- # )
427
 
428
 
429
  def timegpt_anom():
@@ -462,6 +422,8 @@ def timegpt_anom():
462
  st.session_state.ds_col = ds_col
463
  st.session_state.y_col = y_col
464
 
 
 
465
  if st.sidebar.button("Submit"):
466
  anom_df = nixtla_client.detect_anomalies(
467
  df=df,
 
209
  with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
210
  uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
211
  if uploaded_file:
212
+ df = pd.read_csv(uploaded_file, index_col=0)
213
  st.session_state.df = df
214
  else:
215
  df = load_default()
 
377
  )
378
  st.write(forecast_df)
379
 
380
+ nixtla_client.plot(
381
+ df,
382
+ forecast_df,
383
+ level=[90],
384
+ max_insample_length=365
385
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386
 
 
 
 
 
 
387
 
388
 
389
  def timegpt_anom():
 
422
  st.session_state.ds_col = ds_col
423
  st.session_state.y_col = y_col
424
 
425
+ freq = determine_frequency(df)
426
+
427
  if st.sidebar.button("Submit"):
428
  anom_df = nixtla_client.detect_anomalies(
429
  df=df,