Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -54,7 +54,7 @@ def load_all_models():
|
|
54 |
return nhits_models, timesnet_models, lstm_models, tft_models
|
55 |
|
56 |
def generate_forecast(model, df,tag=False):
|
57 |
-
if tag:
|
58 |
forecast_df = model.predict()
|
59 |
else:
|
60 |
forecast_df = model.predict(df=df)
|
@@ -162,7 +162,7 @@ def model_train(df,model, ds_col, freq):
|
|
162 |
nf = NeuralForecast(models=[model], freq=freq)
|
163 |
df[ds_col] = pd.to_datetime(df[ds_col])
|
164 |
nf.fit(df)
|
165 |
-
return
|
166 |
|
167 |
def forecast_time_series(df, model_type, horizon, max_steps=200, ds_col='ds',y_col):
|
168 |
start_time = time.time() # Start timing
|
|
|
54 |
return nhits_models, timesnet_models, lstm_models, tft_models
|
55 |
|
56 |
def generate_forecast(model, df,tag=False):
|
57 |
+
if tag == 'retrain':
|
58 |
forecast_df = model.predict()
|
59 |
else:
|
60 |
forecast_df = model.predict(df=df)
|
|
|
162 |
nf = NeuralForecast(models=[model], freq=freq)
|
163 |
df[ds_col] = pd.to_datetime(df[ds_col])
|
164 |
nf.fit(df)
|
165 |
+
return nf
|
166 |
|
167 |
def forecast_time_series(df, model_type, horizon, max_steps=200, ds_col='ds',y_col):
|
168 |
start_time = time.time() # Start timing
|