azrai99 commited on
Commit
90869c2
·
verified ·
1 Parent(s): d511c44

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -13
app.py CHANGED
@@ -176,9 +176,9 @@ def forecast_time_series(df, model_type, freq, horizon, max_steps=200):
176
 
177
  @st.cache_data
178
  def load_default():
179
- df = AirPassengersDf.copy()
180
  return df
181
-
182
  def transfer_learning_forecasting():
183
  st.title("Transfer Learning Forecasting")
184
 
@@ -192,7 +192,7 @@ def transfer_learning_forecasting():
192
  # Model selection and forecasting
193
  st.subheader("Model Selection and Forecasting")
194
  model_choice = st.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
195
- horizon = st.slider("Forecast horizon", 1, 100, 10)
196
 
197
  # Determine frequency of data
198
  frequency = determine_frequency(df)
@@ -219,33 +219,33 @@ def transfer_learning_forecasting():
219
  time_taken = end_time - start_time
220
  st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")
221
 
222
- def dynamic_forecasting():
223
  st.title("Dynamic Forecasting")
224
-
225
  # Upload dataset
226
  uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
227
  if uploaded_file:
228
  df = pd.read_csv(uploaded_file)
229
  else:
230
  df = load_default()
231
-
232
  # Dynamic forecasting
233
  st.subheader("Dynamic Model Selection and Forecasting")
234
  dynamic_model_choice = st.selectbox("Select model for dynamic forecasting", ["NHITS", "TimesNet", "LSTM", "TFT"], key="dynamic_model_choice")
235
- dynamic_horizon = st.slider("Forecast horizon for dynamic forecasting", 1, 100, 10, key="dynamic_horizon")
236
-
237
  # Determine frequency of data
238
  frequency = determine_frequency(df)
239
  st.write(f"Detected frequency: {frequency}")
240
-
241
- forecast_time_series(df, dynamic_model_choice, frequency, dynamic_horizon
242
-
243
  # Define the main navigation
244
  pg = st.navigation({
245
  "Overview": [
246
  # Load pages from functions
247
- st.Page(transfer_learning_forecasting, title="Transfer Learning Forecasting", default=True, icon=":material/library_books:"),
248
- st.Page(dynamic_forecasting, title="Dynamic Forecasting", icon=":material/person:"),
249
  ]
250
  })
251
 
 
176
 
177
  @st.cache_data
178
  def load_default():
179
+ df = AirPassengersDF.copy()
180
  return df
181
+
182
  def transfer_learning_forecasting():
183
  st.title("Transfer Learning Forecasting")
184
 
 
192
  # Model selection and forecasting
193
  st.subheader("Model Selection and Forecasting")
194
  model_choice = st.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
195
+ horizon = st.number_input("Forecast horizon", value=18)
196
 
197
  # Determine frequency of data
198
  frequency = determine_frequency(df)
 
219
  time_taken = end_time - start_time
220
  st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")
221
 
222
+ def dynamic_forecasting():
223
  st.title("Dynamic Forecasting")
224
+
225
  # Upload dataset
226
  uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
227
  if uploaded_file:
228
  df = pd.read_csv(uploaded_file)
229
  else:
230
  df = load_default()
231
+
232
  # Dynamic forecasting
233
  st.subheader("Dynamic Model Selection and Forecasting")
234
  dynamic_model_choice = st.selectbox("Select model for dynamic forecasting", ["NHITS", "TimesNet", "LSTM", "TFT"], key="dynamic_model_choice")
235
+ dynamic_horizon = st.number_input("Forecast horizon", value=18)
236
+
237
  # Determine frequency of data
238
  frequency = determine_frequency(df)
239
  st.write(f"Detected frequency: {frequency}")
240
+
241
+ forecast_time_series(df, dynamic_model_choice, frequency, dynamic_horizon)
242
+
243
  # Define the main navigation
244
  pg = st.navigation({
245
  "Overview": [
246
  # Load pages from functions
247
+ st.Page(transfer_learning_forecasting, title="Transfer Learning Forecasting", default=True, icon=":material/query_stats:"),
248
+ st.Page(dynamic_forecasting, title="Dynamic Forecasting", icon=":material/monitoring:"),
249
  ]
250
  })
251