Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -209,7 +209,7 @@ def load_default():
|
|
209 |
return df
|
210 |
|
211 |
def transfer_learning_forecasting():
|
212 |
-
st.title("
|
213 |
st.markdown("""
|
214 |
Instant time series forecasting and visualization by using various pre-trained deep neural network-based model trained on M4 data.
|
215 |
""")
|
@@ -217,14 +217,30 @@ def transfer_learning_forecasting():
|
|
217 |
nhits_models, timesnet_models, lstm_models, tft_models = load_all_models()
|
218 |
|
219 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
220 |
-
uploaded_file
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
else:
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
columns = df.columns.tolist() # Convert Index to list
|
229 |
opt = []
|
230 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
@@ -467,9 +483,9 @@ def timegpt_anom():
|
|
467 |
|
468 |
|
469 |
pg = st.navigation({
|
470 |
-
"
|
471 |
# Load pages from functions
|
472 |
-
st.Page(transfer_learning_forecasting, title="
|
473 |
st.Page(dynamic_forecasting, title="Dynamic Forecasting", icon=":material/monitoring:"),
|
474 |
],
|
475 |
"TimeGPT": [
|
|
|
209 |
return df
|
210 |
|
211 |
def transfer_learning_forecasting():
|
212 |
+
st.title("Zero-shot Forecasting")
|
213 |
st.markdown("""
|
214 |
Instant time series forecasting and visualization by using various pre-trained deep neural network-based model trained on M4 data.
|
215 |
""")
|
|
|
217 |
nhits_models, timesnet_models, lstm_models, tft_models = load_all_models()
|
218 |
|
219 |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
|
220 |
+
if 'uploaded_file' not in st.session_state:
|
221 |
+
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
222 |
+
if uploaded_file:
|
223 |
+
df = pd.read_csv(uploaded_file)
|
224 |
+
st.session_state.df = df
|
225 |
+
st.session_state.uploaded_file = uploaded_file
|
226 |
+
else:
|
227 |
+
df = load_default()
|
228 |
+
st.session_state.df = df
|
229 |
+
|
230 |
else:
|
231 |
+
if st.checkbox("Upload a new file(CSV)"):
|
232 |
+
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
|
233 |
+
if uploaded_file:
|
234 |
+
df = pd.read_csv(uploaded_file)
|
235 |
+
st.session_state.df = df
|
236 |
+
st.session_state.uploaded_file = uploaded_file
|
237 |
+
else:
|
238 |
+
df = load_default()
|
239 |
+
st.session_state.df = df
|
240 |
+
else:
|
241 |
+
uploaded_file = st.session_state.uploaded_file
|
242 |
+
|
243 |
+
|
244 |
columns = df.columns.tolist() # Convert Index to list
|
245 |
opt = []
|
246 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
|
|
483 |
|
484 |
|
485 |
pg = st.navigation({
|
486 |
+
"Neuralforecast": [
|
487 |
# Load pages from functions
|
488 |
+
st.Page(transfer_learning_forecasting, title="Zero-shot Forecasting", default=True, icon=":material/query_stats:"),
|
489 |
st.Page(dynamic_forecasting, title="Dynamic Forecasting", icon=":material/monitoring:"),
|
490 |
],
|
491 |
"TimeGPT": [
|