Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -414,7 +414,7 @@ def timegpt_fcst():
|
|
414 |
|
415 |
df = df.drop_duplicates(subset=['ds']).reset_index(drop=True)
|
416 |
|
417 |
-
|
418 |
if st.sidebar.button("Submit"):
|
419 |
start_time = time.time()
|
420 |
forecast_df = nixtla_client.forecast(
|
@@ -428,7 +428,17 @@ def timegpt_fcst():
|
|
428 |
|
429 |
if 'forecast_df' in st.session_state:
|
430 |
forecast_df = st.session_state.forecast_df
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
|
433 |
end_time = time.time() # End timing
|
434 |
time_taken = end_time - start_time
|
@@ -483,6 +493,8 @@ def timegpt_anom():
|
|
483 |
freq = determine_frequency(df)
|
484 |
|
485 |
df = df.drop_duplicates(subset=['ds']).reset_index(drop=True)
|
|
|
|
|
486 |
if st.sidebar.button("Submit"):
|
487 |
start_time=time.time()
|
488 |
anom_df = nixtla_client.detect_anomalies(
|
@@ -494,7 +506,17 @@ def timegpt_anom():
|
|
494 |
|
495 |
if 'anom_df' in st.session_state:
|
496 |
anom_df = st.session_state.anom_df
|
497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
|
499 |
end_time = time.time() # End timing
|
500 |
time_taken = end_time - start_time
|
|
|
414 |
|
415 |
df = df.drop_duplicates(subset=['ds']).reset_index(drop=True)
|
416 |
|
417 |
+
plot_type = st.sidebar.selectbox("Select Visualization", ["Matplotlib", "Plotly"])
|
418 |
if st.sidebar.button("Submit"):
|
419 |
start_time = time.time()
|
420 |
forecast_df = nixtla_client.forecast(
|
|
|
428 |
|
429 |
if 'forecast_df' in st.session_state:
|
430 |
forecast_df = st.session_state.forecast_df
|
431 |
+
|
432 |
+
if plot_type == "Matplotlib":
|
433 |
+
# Convert the Plotly figure to a Matplotlib figure if needed
|
434 |
+
# Note: You may need to handle this conversion depending on your specific use case
|
435 |
+
# For now, this example assumes that you are using a Matplotlib figure
|
436 |
+
fig = nixtla_client.plot(df, forecast_df, level=[90], engine='matplotlib')
|
437 |
+
st.pyplot(fig)
|
438 |
+
elif plot_type == "Plotly":
|
439 |
+
# Plotly figure directly
|
440 |
+
fig = nixtla_client.plot(df, forecast_df, level=[90], engine='plotly')
|
441 |
+
st.plotly_chart(fig)
|
442 |
|
443 |
end_time = time.time() # End timing
|
444 |
time_taken = end_time - start_time
|
|
|
493 |
freq = determine_frequency(df)
|
494 |
|
495 |
df = df.drop_duplicates(subset=['ds']).reset_index(drop=True)
|
496 |
+
|
497 |
+
plot_type = st.sidebar.selectbox("Select Visualization", ["Matplotlib", "Plotly"])
|
498 |
if st.sidebar.button("Submit"):
|
499 |
start_time=time.time()
|
500 |
anom_df = nixtla_client.detect_anomalies(
|
|
|
506 |
|
507 |
if 'anom_df' in st.session_state:
|
508 |
anom_df = st.session_state.anom_df
|
509 |
+
|
510 |
+
if plot_type == "Matplotlib":
|
511 |
+
# Convert the Plotly figure to a Matplotlib figure if needed
|
512 |
+
# Note: You may need to handle this conversion depending on your specific use case
|
513 |
+
# For now, this example assumes that you are using a Matplotlib figure
|
514 |
+
fig = nixtla_client.plot(df, forecast_df, level=[90], engine='matplotlib')
|
515 |
+
st.pyplot(fig)
|
516 |
+
elif plot_type == "Plotly":
|
517 |
+
# Plotly figure directly
|
518 |
+
fig = nixtla_client.plot(df, forecast_df, level=[90], engine='plotly')
|
519 |
+
st.plotly_chart(fig)
|
520 |
|
521 |
end_time = time.time() # End timing
|
522 |
time_taken = end_time - start_time
|