aztro commited on
Commit
48e846d
Β·
verified Β·
1 Parent(s): 72b934b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -37
app.py CHANGED
@@ -6,33 +6,34 @@ import torch
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
 
 
 
 
 
 
12
  pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("aztro/mabama-sdxl", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
21
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
 
26
  generator = torch.Generator().manual_seed(seed)
27
 
28
  image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
  ).images[0]
37
 
38
  return image
@@ -43,20 +44,16 @@ examples = [
43
  "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
- css="""
47
  #col-container {
48
  margin: 0 auto;
49
  max-width: 520px;
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
59
-
60
  with gr.Column(elem_id="col-container"):
61
  gr.Markdown(f"""
62
  # Text-to-Image Gradio Template
@@ -64,7 +61,6 @@ with gr.Blocks(css=css) as demo:
64
  """)
65
 
66
  with gr.Row():
67
-
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
@@ -72,20 +68,17 @@ with gr.Blocks(css=css) as demo:
72
  placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
  run_button = gr.Button("Run", scale=0)
77
 
78
  result = gr.Image(label="Result", show_label=False)
79
 
80
  with gr.Accordion("Advanced Settings", open=False):
81
-
82
  negative_prompt = gr.Text(
83
  label="Negative prompt",
84
  max_lines=1,
85
  placeholder="Enter a negative prompt",
86
  visible=False,
87
  )
88
-
89
  seed = gr.Slider(
90
  label="Seed",
91
  minimum=0,
@@ -93,11 +86,8 @@ with gr.Blocks(css=css) as demo:
93
  step=1,
94
  value=0,
95
  )
96
-
97
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
  with gr.Row():
100
-
101
  width = gr.Slider(
102
  label="Width",
103
  minimum=256,
@@ -105,7 +95,6 @@ with gr.Blocks(css=css) as demo:
105
  step=32,
106
  value=512,
107
  )
108
-
109
  height = gr.Slider(
110
  label="Height",
111
  minimum=256,
@@ -113,9 +102,7 @@ with gr.Blocks(css=css) as demo:
113
  step=32,
114
  value=512,
115
  )
116
-
117
  with gr.Row():
118
-
119
  guidance_scale = gr.Slider(
120
  label="Guidance scale",
121
  minimum=0.0,
@@ -123,7 +110,6 @@ with gr.Blocks(css=css) as demo:
123
  step=0.1,
124
  value=0.0,
125
  )
126
-
127
  num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
@@ -133,14 +119,14 @@ with gr.Blocks(css=css) as demo:
133
  )
134
 
135
  gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
  )
139
 
140
  run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
  )
145
 
146
  demo.queue().launch()
 
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
+ # Cargar el modelo
10
+ pipe = DiffusionPipeline.from_pretrained(
11
+ "aztro/mabama-sdxl",
12
+ torch_dtype=torch.float16 if device == "cuda" else torch.float32,
13
+ use_safetensors=True
14
+ )
15
+ pipe = pipe.to(device)
16
+
17
+ if device == "cuda":
18
  pipe.enable_xformers_memory_efficient_attention()
 
 
 
 
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
24
  if randomize_seed:
25
  seed = random.randint(0, MAX_SEED)
26
 
27
  generator = torch.Generator().manual_seed(seed)
28
 
29
  image = pipe(
30
+ prompt=prompt,
31
+ negative_prompt=negative_prompt,
32
+ guidance_scale=guidance_scale,
33
+ num_inference_steps=num_inference_steps,
34
+ width=width,
35
+ height=height,
36
+ generator=generator
37
  ).images[0]
38
 
39
  return image
 
44
  "A delicious ceviche cheesecake slice",
45
  ]
46
 
47
+ css = """
48
  #col-container {
49
  margin: 0 auto;
50
  max-width: 520px;
51
  }
52
  """
53
 
54
+ power_device = "GPU" if device == "cuda" else "CPU"
 
 
 
55
 
56
  with gr.Blocks(css=css) as demo:
 
57
  with gr.Column(elem_id="col-container"):
58
  gr.Markdown(f"""
59
  # Text-to-Image Gradio Template
 
61
  """)
62
 
63
  with gr.Row():
 
64
  prompt = gr.Text(
65
  label="Prompt",
66
  show_label=False,
 
68
  placeholder="Enter your prompt",
69
  container=False,
70
  )
 
71
  run_button = gr.Button("Run", scale=0)
72
 
73
  result = gr.Image(label="Result", show_label=False)
74
 
75
  with gr.Accordion("Advanced Settings", open=False):
 
76
  negative_prompt = gr.Text(
77
  label="Negative prompt",
78
  max_lines=1,
79
  placeholder="Enter a negative prompt",
80
  visible=False,
81
  )
 
82
  seed = gr.Slider(
83
  label="Seed",
84
  minimum=0,
 
86
  step=1,
87
  value=0,
88
  )
 
89
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
90
  with gr.Row():
 
91
  width = gr.Slider(
92
  label="Width",
93
  minimum=256,
 
95
  step=32,
96
  value=512,
97
  )
 
98
  height = gr.Slider(
99
  label="Height",
100
  minimum=256,
 
102
  step=32,
103
  value=512,
104
  )
 
105
  with gr.Row():
 
106
  guidance_scale = gr.Slider(
107
  label="Guidance scale",
108
  minimum=0.0,
 
110
  step=0.1,
111
  value=0.0,
112
  )
 
113
  num_inference_steps = gr.Slider(
114
  label="Number of inference steps",
115
  minimum=1,
 
119
  )
120
 
121
  gr.Examples(
122
+ examples=examples,
123
+ inputs=[prompt]
124
  )
125
 
126
  run_button.click(
127
+ fn=infer,
128
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
129
+ outputs=[result]
130
  )
131
 
132
  demo.queue().launch()